{"title":"Optical Lines in Europium and Terbium-Activated Yttrium Tantalate Phosphor: Combined Experimental and Group-Theoretical Analysis","authors":"Michael Nazarov, B. Tsukerblat","doi":"10.3390/opt4030037","DOIUrl":null,"url":null,"abstract":"The rare-earth ions in crystals such as terbium (YTaO4:Tb3+) and europium (YTaO4:Eu3+)-activated yttrium tantalate phosphors have a number of attractive features that predetermine their crucial role in practical application in contemporary optoelectronic devices. In this article, we employ the group-theoretical arguments aimed to reveal the group-theoretical classification of the crystal field levels and selection rules for the allowed optical transition between the crystal field components of Tb3+ and Eu3+ of the low symmetry crystal field in the activated yttrium tantalate phosphors. We also establish possible polarization rules for the lines corresponding to the allowed transitions. We deduce the symmetry-assisted results for the selection rules in the optical transitions accompanied by the absorption/emission of the vibrational quanta. The selection rules for the vibronic satellites of the zero-phonon lines are expected to be useful for the identification of the lines in the spectra of rare-earth ions with a weak vibronic coupling. The results of the low-temperature measurements of photoluminescence under the 325 nm excitation are in compliance with the group-theoretical analysis. The aim of the paper is to establish symmetry-assisted results that are the background of the quantitative crystal field theory based on the quantum-mechanical consideration.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/opt4030037","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The rare-earth ions in crystals such as terbium (YTaO4:Tb3+) and europium (YTaO4:Eu3+)-activated yttrium tantalate phosphors have a number of attractive features that predetermine their crucial role in practical application in contemporary optoelectronic devices. In this article, we employ the group-theoretical arguments aimed to reveal the group-theoretical classification of the crystal field levels and selection rules for the allowed optical transition between the crystal field components of Tb3+ and Eu3+ of the low symmetry crystal field in the activated yttrium tantalate phosphors. We also establish possible polarization rules for the lines corresponding to the allowed transitions. We deduce the symmetry-assisted results for the selection rules in the optical transitions accompanied by the absorption/emission of the vibrational quanta. The selection rules for the vibronic satellites of the zero-phonon lines are expected to be useful for the identification of the lines in the spectra of rare-earth ions with a weak vibronic coupling. The results of the low-temperature measurements of photoluminescence under the 325 nm excitation are in compliance with the group-theoretical analysis. The aim of the paper is to establish symmetry-assisted results that are the background of the quantitative crystal field theory based on the quantum-mechanical consideration.