Large-scale behavioral targeting with a social twist

Kun Liu, Lei Tang
{"title":"Large-scale behavioral targeting with a social twist","authors":"Kun Liu, Lei Tang","doi":"10.1145/2063576.2063838","DOIUrl":null,"url":null,"abstract":"Behavioral targeting (BT) is a widely used technique for online advertising. It leverages information collected on an individual's web-browsing behavior, such as page views, search queries and ad clicks, to select the ads most relevant to user to display. With the proliferation of social networks, it is possible to relate the behavior of individuals and their social connections. Although the similarity among connected individuals are well established (i.e., homophily), it is still not clear whether and how we can leverage the activities of one's friends for behavioral targeting; whether forecasts derived from such social information are more accurate than standard behavioral targeting models. In this paper, we strive to answer these questions by evaluating the predictive power of social data across 60 consumer domains on a large online network of over 180 million users in a period of two and a half months. To our best knowledge, this is the most comprehensive study of social data in the context of behavioral targeting on such an unprecedented scale. Our analysis offers interesting insights into the value of social data for developing the next generation of targeting services.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"1 1","pages":"1815-1824"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Behavioral targeting (BT) is a widely used technique for online advertising. It leverages information collected on an individual's web-browsing behavior, such as page views, search queries and ad clicks, to select the ads most relevant to user to display. With the proliferation of social networks, it is possible to relate the behavior of individuals and their social connections. Although the similarity among connected individuals are well established (i.e., homophily), it is still not clear whether and how we can leverage the activities of one's friends for behavioral targeting; whether forecasts derived from such social information are more accurate than standard behavioral targeting models. In this paper, we strive to answer these questions by evaluating the predictive power of social data across 60 consumer domains on a large online network of over 180 million users in a period of two and a half months. To our best knowledge, this is the most comprehensive study of social data in the context of behavioral targeting on such an unprecedented scale. Our analysis offers interesting insights into the value of social data for developing the next generation of targeting services.
具有社会扭曲的大规模行为目标
行为定位(BT)是一种广泛应用于网络广告的技术。它利用收集到的个人网络浏览行为信息,如页面浏览量、搜索查询和广告点击,来选择与用户最相关的广告来显示。随着社会网络的扩散,将个人的行为与其社会关系联系起来是可能的。尽管相互联系的个体之间的相似性已经确立(即同质性),但我们是否以及如何利用一个人的朋友的活动来进行行为定位仍然不清楚;从这些社会信息中得出的预测是否比标准的行为定位模型更准确。在本文中,我们通过在两个半月的时间内评估超过1.8亿用户的大型在线网络上60个消费者领域的社交数据的预测能力,努力回答这些问题。据我们所知,这是在如此空前规模的行为定位背景下对社会数据进行的最全面的研究。我们的分析为开发下一代目标服务的社交数据价值提供了有趣的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信