{"title":"Large-scale behavioral targeting with a social twist","authors":"Kun Liu, Lei Tang","doi":"10.1145/2063576.2063838","DOIUrl":null,"url":null,"abstract":"Behavioral targeting (BT) is a widely used technique for online advertising. It leverages information collected on an individual's web-browsing behavior, such as page views, search queries and ad clicks, to select the ads most relevant to user to display. With the proliferation of social networks, it is possible to relate the behavior of individuals and their social connections. Although the similarity among connected individuals are well established (i.e., homophily), it is still not clear whether and how we can leverage the activities of one's friends for behavioral targeting; whether forecasts derived from such social information are more accurate than standard behavioral targeting models. In this paper, we strive to answer these questions by evaluating the predictive power of social data across 60 consumer domains on a large online network of over 180 million users in a period of two and a half months. To our best knowledge, this is the most comprehensive study of social data in the context of behavioral targeting on such an unprecedented scale. Our analysis offers interesting insights into the value of social data for developing the next generation of targeting services.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"1 1","pages":"1815-1824"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Behavioral targeting (BT) is a widely used technique for online advertising. It leverages information collected on an individual's web-browsing behavior, such as page views, search queries and ad clicks, to select the ads most relevant to user to display. With the proliferation of social networks, it is possible to relate the behavior of individuals and their social connections. Although the similarity among connected individuals are well established (i.e., homophily), it is still not clear whether and how we can leverage the activities of one's friends for behavioral targeting; whether forecasts derived from such social information are more accurate than standard behavioral targeting models. In this paper, we strive to answer these questions by evaluating the predictive power of social data across 60 consumer domains on a large online network of over 180 million users in a period of two and a half months. To our best knowledge, this is the most comprehensive study of social data in the context of behavioral targeting on such an unprecedented scale. Our analysis offers interesting insights into the value of social data for developing the next generation of targeting services.