Modality analysis of patterns in reaction-diffusion systems with random perturbations

IF 0.3 Q4 MATHEMATICS
A. Kolinichenko, L. Ryashko
{"title":"Modality analysis of patterns in reaction-diffusion systems with random perturbations","authors":"A. Kolinichenko, L. Ryashko","doi":"10.20537/2226-3594-2019-53-07","DOIUrl":null,"url":null,"abstract":"In this paper, a distributed Brusselator model with diffusion is investigated. It is well known that this model undergoes both Andronov-Hopf and Turing bifurcations. It is shown that in the parametric zone of diffusion instability the model generates a variety of stable spatially nonhomogeneous structures (patterns). This system exhibits a phenomenon of the multistability with the diversity of stable spatial structures. At the same time, each pattern has its unique parametric range, on which it may be observed. The focus is on analysis of stochastic phenomena of pattern formation and transitions induced by small random perturbations. Stochastic effects are studied by the spatial modality analysis. It is shown that the structures possess different degrees of stochastic sensitivity.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"1 4","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20537/2226-3594-2019-53-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, a distributed Brusselator model with diffusion is investigated. It is well known that this model undergoes both Andronov-Hopf and Turing bifurcations. It is shown that in the parametric zone of diffusion instability the model generates a variety of stable spatially nonhomogeneous structures (patterns). This system exhibits a phenomenon of the multistability with the diversity of stable spatial structures. At the same time, each pattern has its unique parametric range, on which it may be observed. The focus is on analysis of stochastic phenomena of pattern formation and transitions induced by small random perturbations. Stochastic effects are studied by the spatial modality analysis. It is shown that the structures possess different degrees of stochastic sensitivity.
随机扰动下反应扩散系统模式的模态分析
本文研究了一类具有扩散的分布Brusselator模型。众所周知,这个模型同时经历了Andronov-Hopf和Turing分岔。结果表明,在扩散不稳定的参数区,模型产生了多种稳定的空间非均匀结构(模式)。该系统表现出稳定空间结构多样性的多稳性现象。同时,每种模式都有其独特的参数范围,可以在该范围上观察到它。重点是分析由小的随机扰动引起的模式形成和转变的随机现象。通过空间模态分析研究了随机效应。结果表明,结构具有不同程度的随机敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信