{"title":"Modality analysis of patterns in reaction-diffusion systems with random perturbations","authors":"A. Kolinichenko, L. Ryashko","doi":"10.20537/2226-3594-2019-53-07","DOIUrl":null,"url":null,"abstract":"In this paper, a distributed Brusselator model with diffusion is investigated. It is well known that this model undergoes both Andronov-Hopf and Turing bifurcations. It is shown that in the parametric zone of diffusion instability the model generates a variety of stable spatially nonhomogeneous structures (patterns). This system exhibits a phenomenon of the multistability with the diversity of stable spatial structures. At the same time, each pattern has its unique parametric range, on which it may be observed. The focus is on analysis of stochastic phenomena of pattern formation and transitions induced by small random perturbations. Stochastic effects are studied by the spatial modality analysis. It is shown that the structures possess different degrees of stochastic sensitivity.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"1 4","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20537/2226-3594-2019-53-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, a distributed Brusselator model with diffusion is investigated. It is well known that this model undergoes both Andronov-Hopf and Turing bifurcations. It is shown that in the parametric zone of diffusion instability the model generates a variety of stable spatially nonhomogeneous structures (patterns). This system exhibits a phenomenon of the multistability with the diversity of stable spatial structures. At the same time, each pattern has its unique parametric range, on which it may be observed. The focus is on analysis of stochastic phenomena of pattern formation and transitions induced by small random perturbations. Stochastic effects are studied by the spatial modality analysis. It is shown that the structures possess different degrees of stochastic sensitivity.