Singular Metrics with Negative Scalar Curvature

M. Cheng, Man-Chun Lee, Luen-Fai Tam
{"title":"Singular Metrics with Negative Scalar Curvature","authors":"M. Cheng, Man-Chun Lee, Luen-Fai Tam","doi":"10.1142/s0129167x22500471","DOIUrl":null,"url":null,"abstract":"Motivated by the work of Li and Mantoulidis, we study singular metrics which are uniformly Euclidean $(L^\\infty)$ on a compact manifold $M^n$ ($n\\ge 3$) with negative Yamabe invariant $\\sigma(M)$. It is well-known that if $g$ is a smooth metric on $M$ with unit volume and with scalar curvature $R(g)\\ge \\sigma(M)$, then $g$ is Einstein. We show, in all dimensions, the same is true for metrics with edge singularities with cone angles $\\leq 2\\pi$ along codimension-2 submanifolds. We also show in three dimension, if the Yamabe invariant of connected sum of two copies of $M$ attains its minimum, then the same is true for $L^\\infty$ metrics with isolated point singularities.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129167x22500471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Motivated by the work of Li and Mantoulidis, we study singular metrics which are uniformly Euclidean $(L^\infty)$ on a compact manifold $M^n$ ($n\ge 3$) with negative Yamabe invariant $\sigma(M)$. It is well-known that if $g$ is a smooth metric on $M$ with unit volume and with scalar curvature $R(g)\ge \sigma(M)$, then $g$ is Einstein. We show, in all dimensions, the same is true for metrics with edge singularities with cone angles $\leq 2\pi$ along codimension-2 submanifolds. We also show in three dimension, if the Yamabe invariant of connected sum of two copies of $M$ attains its minimum, then the same is true for $L^\infty$ metrics with isolated point singularities.
负标量曲率的奇异度量
在Li和Mantoulidis工作的激励下,我们研究了具有负Yamabe不变量$\sigma(M)$的紧流形$M^n$ ($n\ge 3$)上一致欧几里得$(L^\infty)$的奇异度量。众所周知,如果$g$是$M$上具有单位体积和标量曲率$R(g)\ge \sigma(M)$的光滑度规,那么$g$就是爱因斯坦。我们证明,在所有维度中,对于沿余维-2子流形具有锥角$\leq 2\pi$边奇异的度量也是如此。在三维空间中,如果$M$的两个副本的连通和的Yamabe不变量达到最小值,那么对于具有孤立点奇点的$L^\infty$度量也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信