{"title":"On number of particles in coalescing-fragmentating Wasserstein dynamics","authors":"V. Konarovskyi","doi":"10.37863/tsp-2295310746-81","DOIUrl":null,"url":null,"abstract":"\nWe consider the system of sticky-reflected Brownian particles on the real line proposed in [4]. The model is a modification of the Howitt-Warren flow but now the diffusion rate of particles is inversely proportional to the mass which they transfer. It is known that the system consists of a finite number of distinct particles for almost all times. In this paper, we show that the system also admits an infinite number of distinct particles on a dense subset of the time interval if and only if the function responsible for the splitting of particles takes an infinite number of values. \n","PeriodicalId":38143,"journal":{"name":"Theory of Stochastic Processes","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Stochastic Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37863/tsp-2295310746-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
We consider the system of sticky-reflected Brownian particles on the real line proposed in [4]. The model is a modification of the Howitt-Warren flow but now the diffusion rate of particles is inversely proportional to the mass which they transfer. It is known that the system consists of a finite number of distinct particles for almost all times. In this paper, we show that the system also admits an infinite number of distinct particles on a dense subset of the time interval if and only if the function responsible for the splitting of particles takes an infinite number of values.