Extending static models by using time series to identify the dynamical behavior

J. Wood, J. Horn, D. Root
{"title":"Extending static models by using time series to identify the dynamical behavior","authors":"J. Wood, J. Horn, D. Root","doi":"10.1109/MWSYM.2005.1517129","DOIUrl":null,"url":null,"abstract":"We use a simple, static model of an amplifier and augment the model by adding a nonlinear dynamical part in which the dynamics are identified using principles of time series analysis. The static part of the model is a polynomial nonlinearity in the input voltage, and is implemented using a built-in system amplifier model in ADS. The dynamic nonlinear part of the model is implemented using an artificial neural network. This new model is fast to simulate and extends the simple, single frequency system amplifier model to cover a wide bandwidth, maintaining good large-signal predictions.","PeriodicalId":13133,"journal":{"name":"IEEE MTT-S International Microwave Symposium Digest, 2005.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE MTT-S International Microwave Symposium Digest, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2005.1517129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We use a simple, static model of an amplifier and augment the model by adding a nonlinear dynamical part in which the dynamics are identified using principles of time series analysis. The static part of the model is a polynomial nonlinearity in the input voltage, and is implemented using a built-in system amplifier model in ADS. The dynamic nonlinear part of the model is implemented using an artificial neural network. This new model is fast to simulate and extends the simple, single frequency system amplifier model to cover a wide bandwidth, maintaining good large-signal predictions.
通过使用时间序列来扩展静态模型以识别动态行为
我们使用一个简单的放大器静态模型,并通过添加非线性动态部分来增强模型,其中动态是使用时间序列分析原理识别的。该模型的静态部分是输入电压的多项式非线性,并使用ADS中的内置系统放大器模型实现。模型的动态非线性部分使用人工神经网络实现。这种新模型可以快速模拟,并扩展了简单的单频系统放大器模型,以覆盖更宽的带宽,保持良好的大信号预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信