Halla Belhoula, E. H. Mokrani, Abderrahmane Bensegueni, Djihane Bioud
{"title":"Highlight of New Phosphodiesterase 10A Inhibitors Using Molecular Docking","authors":"Halla Belhoula, E. H. Mokrani, Abderrahmane Bensegueni, Djihane Bioud","doi":"10.3844/ajbsp.2019.34.37","DOIUrl":null,"url":null,"abstract":"Phosphodiesterase 10A (PDE 10A) is an effective therapeutic approach for treatments of Schizophrenia (SCZ). In order to identify in silico new potent PDE 10A inhibitors, molecular docking approach was used. In this context, the compound S235 was predicted to exhibit a high potential PDE 10A inhibitory activity among 369 compounds tested. The predicted binding energy of this compound was improved from -10.28 to -13.80 Kcal/mol by structural replacements of its chemical grouping. Finally, the proposed compound was predicted to have good ADMET properties.","PeriodicalId":11025,"journal":{"name":"Current Research in Bioinformatics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ajbsp.2019.34.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Phosphodiesterase 10A (PDE 10A) is an effective therapeutic approach for treatments of Schizophrenia (SCZ). In order to identify in silico new potent PDE 10A inhibitors, molecular docking approach was used. In this context, the compound S235 was predicted to exhibit a high potential PDE 10A inhibitory activity among 369 compounds tested. The predicted binding energy of this compound was improved from -10.28 to -13.80 Kcal/mol by structural replacements of its chemical grouping. Finally, the proposed compound was predicted to have good ADMET properties.