Syeda Ammara Shabbir, S. Shamaila, R. Sharif, N. Zafar, H. Latif, M. Ashiq
{"title":"Electrophoretic Deposition of Uniform Carbon Nanotubes for Nickel Nanocomposites Based Nonenzymatic Glucose Sensor","authors":"Syeda Ammara Shabbir, S. Shamaila, R. Sharif, N. Zafar, H. Latif, M. Ashiq","doi":"10.1166/sl.2020.4237","DOIUrl":null,"url":null,"abstract":"Multiwalled carbon nanotubes (CNTs) have enormous applications but restricted due to low dispersibility. In this project, dispersion efficiency of nonfunctionalized, covalently functionalized and non-covalently functionalized CNTs has been investigated. The surfactant, Sodium Dodecyl\n Sulphate (SDS), played an important role in stable dispersion. UV-Visible spectroscopy compared the dispersion behavior of all CNTs suspensions. The surfactant functionalized CNTs revealed the maximum dispersion. The as produced highly stable dispersion was utilised in fabrication of highly\n homogeneous CNTs electrode using electrophoretic deposition (EPD) and its redox peak currents were higher than Fluorine doped tin oxide (FTO) electrodes, indicating increased charge transport by CNTs. The fabricated CNTs electrode was modified with Nickel (Ni) nanoparticles for Ni/CNTs nanocomposite\n based nonenzymatic glucose sensor fabrication. The CNTs coated FTO substrate was decorated with Ni nanoparticles (NPs) using electrodeposition by cyclic voltammetry (CV). The electron microscopic analysis showed the uniformly dispersed particles of Ni on CNTs electrodes. The Ni/CNTs/FTO based\n non enzymatic glucose sensor exhibits ∼4 s fast response time and ∼605.0 μAmM–1 cm–2 sensitivity along with wide concentration (0.005–3.5 mM) and the detection limit ∼5.0 μM. The easy fabrication technique of Ni-CNTs electrodes\n made them a reliable glucose sensor having good stability.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"120 1","pages":"427-435"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Multiwalled carbon nanotubes (CNTs) have enormous applications but restricted due to low dispersibility. In this project, dispersion efficiency of nonfunctionalized, covalently functionalized and non-covalently functionalized CNTs has been investigated. The surfactant, Sodium Dodecyl
Sulphate (SDS), played an important role in stable dispersion. UV-Visible spectroscopy compared the dispersion behavior of all CNTs suspensions. The surfactant functionalized CNTs revealed the maximum dispersion. The as produced highly stable dispersion was utilised in fabrication of highly
homogeneous CNTs electrode using electrophoretic deposition (EPD) and its redox peak currents were higher than Fluorine doped tin oxide (FTO) electrodes, indicating increased charge transport by CNTs. The fabricated CNTs electrode was modified with Nickel (Ni) nanoparticles for Ni/CNTs nanocomposite
based nonenzymatic glucose sensor fabrication. The CNTs coated FTO substrate was decorated with Ni nanoparticles (NPs) using electrodeposition by cyclic voltammetry (CV). The electron microscopic analysis showed the uniformly dispersed particles of Ni on CNTs electrodes. The Ni/CNTs/FTO based
non enzymatic glucose sensor exhibits ∼4 s fast response time and ∼605.0 μAmM–1 cm–2 sensitivity along with wide concentration (0.005–3.5 mM) and the detection limit ∼5.0 μM. The easy fabrication technique of Ni-CNTs electrodes
made them a reliable glucose sensor having good stability.
期刊介绍:
The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.