{"title":"Almost sharp descriptions of traces of Sobolev $W_{p}^{1}(\\mathbb{R}^{n})$-spaces to arbitrary compact subsets of $\\mathbb{R}^{n}$","authors":"A. Tyulenev","doi":"10.2422/2036-2145.202109_027","DOIUrl":null,"url":null,"abstract":"Let $S \\subset \\mathbb{R}^{n}$ be an arbitrary nonempty compact set such that the $d$-Hausdorff content $\\mathcal{H}^{d}_{\\infty}(S)>0$ for some $d \\in (0,n]$. For each $p \\in (\\max\\{1,n-d\\},n]$, an almost sharp intrinsic description of the trace space $W_{p}^{1}(\\mathbb{R}^{n})|_{S}$ of the Sobolev space $W_{p}^{1}(\\mathbb{R}^{n})$ to the set $S$ is obtained. Furthermore, for each $p \\in (\\max\\{1,n-d\\},n]$ and $\\varepsilon \\in (0, \\min\\{p-(n-d),p-1\\})$, new bounded linear extension operators from the trace space $W_{p}^{1}(\\mathbb{R}^{n})|_{S}$ into the space $W_{p-\\varepsilon}^{1}(\\mathbb{R}^{n})$ are constructed.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202109_027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Let $S \subset \mathbb{R}^{n}$ be an arbitrary nonempty compact set such that the $d$-Hausdorff content $\mathcal{H}^{d}_{\infty}(S)>0$ for some $d \in (0,n]$. For each $p \in (\max\{1,n-d\},n]$, an almost sharp intrinsic description of the trace space $W_{p}^{1}(\mathbb{R}^{n})|_{S}$ of the Sobolev space $W_{p}^{1}(\mathbb{R}^{n})$ to the set $S$ is obtained. Furthermore, for each $p \in (\max\{1,n-d\},n]$ and $\varepsilon \in (0, \min\{p-(n-d),p-1\})$, new bounded linear extension operators from the trace space $W_{p}^{1}(\mathbb{R}^{n})|_{S}$ into the space $W_{p-\varepsilon}^{1}(\mathbb{R}^{n})$ are constructed.