{"title":"Comparative studies on the performance of porous Ti/Sno2-Sb2O3/Pbo2 enhanced by CNT and Bi Co-doped electrodes for methyl orange oxidation","authors":"Wei Zhao, Juntao Xing, Donghui Chen, Jia Shen","doi":"10.1515/jaots-2016-0181","DOIUrl":null,"url":null,"abstract":"Abstract: Three novel, modified PbO2 electrodes with porous titanium as the substrate were successfully prepared by the anodic deposition method. The modified electrodes contained CNT, Bi, or a combination of the two. Their microstructure and electrochemical properties were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction, linear sweep voltammetry and cyclic voltammetry. Further, their electrochemical active surface area was determined, and their capacity to generate hydroxyl radicals and induce electrochemical degradation of methyl orange was studied. Compared with pure PbO2, electrodes with CNT-PbO2, Bi-PbO2, and the Bi-CNT combination had PbO2 films with educed crystal sizes, which increased their specific surface area and active sites for electrochemical reactions. The Bi-CNT-PbO2 electrode had the highest oxygen evolution over potential, while the generation of hydroxyl radical (·OH) and the electro-catalytic degradation of methyl orange were significantly increased with the Bi-CNT electrode. It was demonstrated that this modification can significantly enhance performance in electro-oxidation processes, including degradation compounds. Such improvements can be of importance for the removal of organic pollutants from effluents.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract: Three novel, modified PbO2 electrodes with porous titanium as the substrate were successfully prepared by the anodic deposition method. The modified electrodes contained CNT, Bi, or a combination of the two. Their microstructure and electrochemical properties were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction, linear sweep voltammetry and cyclic voltammetry. Further, their electrochemical active surface area was determined, and their capacity to generate hydroxyl radicals and induce electrochemical degradation of methyl orange was studied. Compared with pure PbO2, electrodes with CNT-PbO2, Bi-PbO2, and the Bi-CNT combination had PbO2 films with educed crystal sizes, which increased their specific surface area and active sites for electrochemical reactions. The Bi-CNT-PbO2 electrode had the highest oxygen evolution over potential, while the generation of hydroxyl radical (·OH) and the electro-catalytic degradation of methyl orange were significantly increased with the Bi-CNT electrode. It was demonstrated that this modification can significantly enhance performance in electro-oxidation processes, including degradation compounds. Such improvements can be of importance for the removal of organic pollutants from effluents.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs