Ishtiaq Maqsood, L. Cundy, M. Biesecker, Jung-Han Kimn, Elise Darlington, Ethan P. Hettwer, Sabina Schill, V. Bommisetty
{"title":"Charge transport kinetics in organic bulk heterojunction morphologies: Mesoscale Monte Carlo simulation analysis","authors":"Ishtiaq Maqsood, L. Cundy, M. Biesecker, Jung-Han Kimn, Elise Darlington, Ethan P. Hettwer, Sabina Schill, V. Bommisetty","doi":"10.1109/PVSC.2014.6925261","DOIUrl":null,"url":null,"abstract":"Monte Carlo simulation was conducted to analyze the significance of morphology domains on charge transport dynamics in organic bulk heterojunction solar cells. Mesoscale simulation was performed using first reaction method with exponential charge carrier lifetime. Current density vs voltage characteristics were obtained for evenly distributed, graded and ordered morphologies. It was observed that assuming 100% exciton dissociation graded morphology resulted better power conversion efficiency than evenly distributed morphology due to improvement in fill factor (FF).","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"65 1","pages":"1758-1761"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Monte Carlo simulation was conducted to analyze the significance of morphology domains on charge transport dynamics in organic bulk heterojunction solar cells. Mesoscale simulation was performed using first reaction method with exponential charge carrier lifetime. Current density vs voltage characteristics were obtained for evenly distributed, graded and ordered morphologies. It was observed that assuming 100% exciton dissociation graded morphology resulted better power conversion efficiency than evenly distributed morphology due to improvement in fill factor (FF).