{"title":"MTSN: A Multi-Temporal Stream Network for Spotting Facial Macro- and Micro-Expression with Hard and Soft Pseudo-labels","authors":"Gen-Bing Liong, Sze‐Teng Liong, John See, C. Chan","doi":"10.1145/3552465.3555040","DOIUrl":null,"url":null,"abstract":"This paper considers the challenge of spotting facial macro- and micro-expression from long videos. We propose the multi-temporal stream network (MTSN) model that takes two distinct inputs by considering the different temporal information in the facial movement. We also introduce a hard and soft pseudo-labeling technique to enable the network to distinguish expression frames from non-expression frames via the learning of salient features in the expression peak frame. Consequently, we demonstrate how a single output from the MTSN model can be post-processed to predict both macro- and micro-expression intervals. Our results outperform the MEGC 2022 baseline method significantly by achieving an overall F1-score of 0.2586 and also did remarkably well on the MEGC 2021 benchmark with an overall F1-score of 0.3620 and 0.2867 on CAS(ME)2 and SAMM Long Videos, respectively.","PeriodicalId":64586,"journal":{"name":"新华航空","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"新华航空","FirstCategoryId":"1094","ListUrlMain":"https://doi.org/10.1145/3552465.3555040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper considers the challenge of spotting facial macro- and micro-expression from long videos. We propose the multi-temporal stream network (MTSN) model that takes two distinct inputs by considering the different temporal information in the facial movement. We also introduce a hard and soft pseudo-labeling technique to enable the network to distinguish expression frames from non-expression frames via the learning of salient features in the expression peak frame. Consequently, we demonstrate how a single output from the MTSN model can be post-processed to predict both macro- and micro-expression intervals. Our results outperform the MEGC 2022 baseline method significantly by achieving an overall F1-score of 0.2586 and also did remarkably well on the MEGC 2021 benchmark with an overall F1-score of 0.3620 and 0.2867 on CAS(ME)2 and SAMM Long Videos, respectively.