A new generation of homology search tools based on probabilistic inference.

S. Eddy
{"title":"A new generation of homology search tools based on probabilistic inference.","authors":"S. Eddy","doi":"10.1142/9781848165632_0019","DOIUrl":null,"url":null,"abstract":"Many theoretical advances have been made in applying probabilistic inference methods to improve the power of sequence homology searches, yet the BLAST suite of programs is still the workhorse for most of the field. The main reason for this is practical: BLAST's programs are about 100-fold faster than the fastest competing implementations of probabilistic inference methods. I describe recent work on the HMMER software suite for protein sequence analysis, which implements probabilistic inference using profile hidden Markov models. Our aim in HMMER3 is to achieve BLAST's speed while further improving the power of probabilistic inference based methods. HMMER3 implements a new probabilistic model of local sequence alignment and a new heuristic acceleration algorithm. Combined with efficient vector-parallel implementations on modern processors, these improvements synergize. HMMER3 uses more powerful log-odds likelihood scores (scores summed over alignment uncertainty, rather than scoring a single optimal alignment); it calculates accurate expectation values (E-values) for those scores without simulation using a generalization of Karlin/Altschul theory; it computes posterior distributions over the ensemble of possible alignments and returns posterior probabilities (confidences) in each aligned residue; and it does all this at an overall speed comparable to BLAST. The HMMER project aims to usher in a new generation of more powerful homology search tools based on probabilistic inference methods.","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1178","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848165632_0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1178

Abstract

Many theoretical advances have been made in applying probabilistic inference methods to improve the power of sequence homology searches, yet the BLAST suite of programs is still the workhorse for most of the field. The main reason for this is practical: BLAST's programs are about 100-fold faster than the fastest competing implementations of probabilistic inference methods. I describe recent work on the HMMER software suite for protein sequence analysis, which implements probabilistic inference using profile hidden Markov models. Our aim in HMMER3 is to achieve BLAST's speed while further improving the power of probabilistic inference based methods. HMMER3 implements a new probabilistic model of local sequence alignment and a new heuristic acceleration algorithm. Combined with efficient vector-parallel implementations on modern processors, these improvements synergize. HMMER3 uses more powerful log-odds likelihood scores (scores summed over alignment uncertainty, rather than scoring a single optimal alignment); it calculates accurate expectation values (E-values) for those scores without simulation using a generalization of Karlin/Altschul theory; it computes posterior distributions over the ensemble of possible alignments and returns posterior probabilities (confidences) in each aligned residue; and it does all this at an overall speed comparable to BLAST. The HMMER project aims to usher in a new generation of more powerful homology search tools based on probabilistic inference methods.
基于概率推理的新一代同源搜索工具。
在应用概率推理方法来提高序列同源性搜索的能力方面,已经取得了许多理论进展,但BLAST套件程序仍然是大多数领域的主力。这样做的主要原因是实用的:BLAST的程序比最快的概率推理方法的竞争实现快100倍左右。我描述了最近在蛋白质序列分析的HMMER软件套件上的工作,该软件使用剖面隐马尔可夫模型实现了概率推断。我们在HMMER3中的目标是达到BLAST的速度,同时进一步提高基于概率推理的方法的能力。HMMER3实现了一种新的局部序列对齐概率模型和一种新的启发式加速算法。结合现代处理器上高效的矢量并行实现,这些改进协同作用。HMMER3使用更强大的对数概率可能性评分(评分总和超过对齐不确定性,而不是单一的最佳对齐评分);它计算准确的期望值(e值),这些分数没有模拟使用Karlin/Altschul理论的推广;它计算可能对齐集合的后验分布,并返回每个对齐残差的后验概率(置信度);它的整体速度与BLAST相当。HMMER项目旨在引入基于概率推理方法的新一代更强大的同源性搜索工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信