Reactive probabilistic programming

Guillaume Baudart, Louis Mandel, Eric Hamilton Atkinson, Benjamin Sherman, Marc Pouzet, Michael Carbin
{"title":"Reactive probabilistic programming","authors":"Guillaume Baudart, Louis Mandel, Eric Hamilton Atkinson, Benjamin Sherman, Marc Pouzet, Michael Carbin","doi":"10.1145/3385412.3386009","DOIUrl":null,"url":null,"abstract":"Synchronous modeling is at the heart of programming languages like Lustre, Esterel, or Scade used routinely for implementing safety critical control software, e.g., fly-by-wire and engine control in planes. However, to date these languages have had limited modern support for modeling uncertainty --- probabilistic aspects of the software's environment or behavior --- even though modeling uncertainty is a primary activity when designing a control system. In this paper we present ProbZelus the first synchronous probabilistic programming language. ProbZelus conservatively provides the facilities of a synchronous language to write control software, with probabilistic constructs to model uncertainties and perform inference-in-the-loop. We present the design and implementation of the language. We propose a measure-theoretic semantics of probabilistic stream functions and a simple type discipline to separate deterministic and probabilistic expressions. We demonstrate a semantics-preserving compilation into a first-order functional language that lends itself to a simple presentation of inference algorithms for streaming models. We also redesign the delayed sampling inference algorithm to provide efficient streaming inference. Together with an evaluation on several reactive applications, our results demonstrate that ProbZelus enables the design of reactive probabilistic applications and efficient, bounded memory inference.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"80 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3386009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Synchronous modeling is at the heart of programming languages like Lustre, Esterel, or Scade used routinely for implementing safety critical control software, e.g., fly-by-wire and engine control in planes. However, to date these languages have had limited modern support for modeling uncertainty --- probabilistic aspects of the software's environment or behavior --- even though modeling uncertainty is a primary activity when designing a control system. In this paper we present ProbZelus the first synchronous probabilistic programming language. ProbZelus conservatively provides the facilities of a synchronous language to write control software, with probabilistic constructs to model uncertainties and perform inference-in-the-loop. We present the design and implementation of the language. We propose a measure-theoretic semantics of probabilistic stream functions and a simple type discipline to separate deterministic and probabilistic expressions. We demonstrate a semantics-preserving compilation into a first-order functional language that lends itself to a simple presentation of inference algorithms for streaming models. We also redesign the delayed sampling inference algorithm to provide efficient streaming inference. Together with an evaluation on several reactive applications, our results demonstrate that ProbZelus enables the design of reactive probabilistic applications and efficient, bounded memory inference.
反应性概率规划
同步建模是Lustre、Esterel或Scade等编程语言的核心,这些编程语言通常用于实现安全关键控制软件,例如飞机上的电传飞行和发动机控制。然而,到目前为止,这些语言对建模不确定性(软件环境或行为的概率方面)的现代支持有限,尽管建模不确定性是设计控制系统时的主要活动。本文提出了第一个同步概率编程语言ProbZelus。ProbZelus保守地提供了一种同步语言来编写控制软件,并使用概率结构来建模不确定性并执行循环推理。我们给出了该语言的设计和实现。我们提出了一个概率流函数的测度论语义和一个简单的类型规则来分离确定性表达式和概率表达式。我们演示了一种保留语义的编译成一阶函数式语言,这种语言可以简单地表示流模型的推理算法。我们还重新设计了延迟采样推理算法,以提供高效的流推理。结合对几个响应性应用程序的评估,我们的结果表明,ProbZelus能够设计响应性概率应用程序和高效的有限内存推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信