{"title":"The practical stability of the discrete, fractional order, state space model of the heat transfer process","authors":"K. Oprzȩdkiewicz, Edyta Gawin","doi":"10.24425/acs.2018.124712","DOIUrl":null,"url":null,"abstract":"In the paper the practical stability problem for the discrete, non-integer order model of one dimmensional heat transfer process is discussed. The conditions associating the practical stability to sample time and maximal size of finite-dimensional approximation of heat transfer model are proposed. These conditions are formulated with the use of spectrum decoposition property and practical stability conditions for scalar, positive, fractional order systems. Results are illustrated by a numerical example.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/acs.2018.124712","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 5
Abstract
In the paper the practical stability problem for the discrete, non-integer order model of one dimmensional heat transfer process is discussed. The conditions associating the practical stability to sample time and maximal size of finite-dimensional approximation of heat transfer model are proposed. These conditions are formulated with the use of spectrum decoposition property and practical stability conditions for scalar, positive, fractional order systems. Results are illustrated by a numerical example.
期刊介绍:
Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.