{"title":"A one-dimensional symmetry result for entire solutions to the Fisher-KPP equation","authors":"C. Sourdis","doi":"10.1090/proc/15415","DOIUrl":null,"url":null,"abstract":"We consider the Fisher-KPP reaction-diffusion equation in the whole space. \nWe prove that if a solution has, to main order and for all times (positive and negative), the same exponential decay as a planar traveling wave with speed larger than the minimal one at its leading edge, then it has to coincide with the aforementioned traveling wave.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the Fisher-KPP reaction-diffusion equation in the whole space.
We prove that if a solution has, to main order and for all times (positive and negative), the same exponential decay as a planar traveling wave with speed larger than the minimal one at its leading edge, then it has to coincide with the aforementioned traveling wave.