{"title":"Nonlinearity tuning and its effects on the performance of a MEMS gyroscope","authors":"E. Tatar, T. Mukherjee, G. Fedder","doi":"10.1109/TRANSDUCERS.2015.7181127","DOIUrl":null,"url":null,"abstract":"A three-fold symmetric SOI-MEMS gyroscope having parasitic softening nonlinearity from the drive comb and frequency tune fingers is successfully linearized through the use of shaped comb fingers that introduce a tuned cubic hardening compensation. The nonlinearity compensated gyroscope achieves high drive displacement (>10μm) while maintaining linear magnitude and phase frequency responses. The proposed tuning method also minimizes the amplitude-frequency (A-f) effects on the drive mode. Cancelling the drive nonlinearities leads to a better bias instability compared to the high displacement with nonlinear characteristics.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7181127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
A three-fold symmetric SOI-MEMS gyroscope having parasitic softening nonlinearity from the drive comb and frequency tune fingers is successfully linearized through the use of shaped comb fingers that introduce a tuned cubic hardening compensation. The nonlinearity compensated gyroscope achieves high drive displacement (>10μm) while maintaining linear magnitude and phase frequency responses. The proposed tuning method also minimizes the amplitude-frequency (A-f) effects on the drive mode. Cancelling the drive nonlinearities leads to a better bias instability compared to the high displacement with nonlinear characteristics.