Isometries of the Space of Sasaki Potentials

Thomas Franzinetti
{"title":"Isometries of the Space of Sasaki Potentials","authors":"Thomas Franzinetti","doi":"10.2422/2036-2145.202112_001","DOIUrl":null,"url":null,"abstract":"Given any two K\\\"ahler manifolds $X_1$ and $X_2$, L. Lempert recently proved that if their spaces of K\\\"ahler potentials are isometric with respect to the Mabuchi metric, then $X_1$ and $X_2$ must be diffeomorphic. We prove that this is no longer the case for Sasaki manifolds. Then, considering regular Sasaki manifolds $M_1$ and $M_2$, we prove that if the spaces of potentials are isometric, then $M_1$ and $M_2$ must have, among others, the same universal covering space. Finally, getting rid of the regularity assumption on $M_1$ and $M_2$, we investigate the consequences of the existence of affine Mabuchi isometries: this leads to a family of Sasaki isospectral structures.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202112_001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given any two K\"ahler manifolds $X_1$ and $X_2$, L. Lempert recently proved that if their spaces of K\"ahler potentials are isometric with respect to the Mabuchi metric, then $X_1$ and $X_2$ must be diffeomorphic. We prove that this is no longer the case for Sasaki manifolds. Then, considering regular Sasaki manifolds $M_1$ and $M_2$, we prove that if the spaces of potentials are isometric, then $M_1$ and $M_2$ must have, among others, the same universal covering space. Finally, getting rid of the regularity assumption on $M_1$ and $M_2$, we investigate the consequences of the existence of affine Mabuchi isometries: this leads to a family of Sasaki isospectral structures.
Sasaki势空间的等距
给定任意两个K\ ahler流形$X_1$和$X_2$, L. Lempert最近证明了如果它们的K\ ahler势的空间相对于Mabuchi度规是等距的,那么$X_1$和$X_2$一定是微分同态的。我们证明这不再是Sasaki流形的情况。然后,考虑正则Sasaki流形$M_1$和$M_2$,证明了如果势空间是等距的,则$M_1$和$M_2$必须具有相同的全称覆盖空间。最后,我们消除了$M_1$和$M_2$上的正则性假设,研究了仿射Mabuchi等距结构存在的结果:由此得到了Sasaki等谱结构族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信