A New Dynamic Method of Multiprocessor Scheduling using Modified Crow Search Optimization

Ronali Madhusmita Sahoo, S. Padhy, Kumar Debasis
{"title":"A New Dynamic Method of Multiprocessor Scheduling using Modified Crow Search Optimization","authors":"Ronali Madhusmita Sahoo, S. Padhy, Kumar Debasis","doi":"10.1109/AISP53593.2022.9760642","DOIUrl":null,"url":null,"abstract":"The task scheduling problem in a heterogeneous multiprocessor system is a challenging area of research. This article proposes a population-based metaheuristic algorithm called Modified Crow Search Optimization (MCSO) algorithm to solve the task scheduling problem. In this paper, the task scheduling problem is considered an optimization problem. The MCSO algorithm is used to find out the minimum makespan and the speedup of the task scheduling problem. The proposed algorithm is compared with some standard algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Shuffled Frog Leaping Algorithm (SFLA), and Crow Search Optimization (CSO). Experimental results prove that the proposed algorithm outperforms all the above algorithms in minimizing the makespan.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The task scheduling problem in a heterogeneous multiprocessor system is a challenging area of research. This article proposes a population-based metaheuristic algorithm called Modified Crow Search Optimization (MCSO) algorithm to solve the task scheduling problem. In this paper, the task scheduling problem is considered an optimization problem. The MCSO algorithm is used to find out the minimum makespan and the speedup of the task scheduling problem. The proposed algorithm is compared with some standard algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Shuffled Frog Leaping Algorithm (SFLA), and Crow Search Optimization (CSO). Experimental results prove that the proposed algorithm outperforms all the above algorithms in minimizing the makespan.
一种基于改进乌鸦搜索优化的多处理器动态调度新方法
异构多处理器系统中的任务调度问题是一个具有挑战性的研究领域。本文提出了一种基于群体的元启发式算法——修正乌鸦搜索优化算法(MCSO)来解决任务调度问题。本文将任务调度问题看作是一个优化问题。采用MCSO算法求解任务调度问题的最大完工时间和加速问题。将该算法与遗传算法(GA)、粒子群算法(PSO)、洗牌青蛙跳跃算法(SFLA)、乌鸦搜索优化(CSO)等标准算法进行了比较。实验结果表明,该算法在最小化makespan方面优于上述算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信