Narrow bandgap HgCdTe technology for IR sensing and imaging focal plane arrays

W. Pan, G. Umana-Membreno, J. Antoszewski, W. Lei, R. Gu, H. Kala, Nima Dehdashtiakhavan, L. Faraone
{"title":"Narrow bandgap HgCdTe technology for IR sensing and imaging focal plane arrays","authors":"W. Pan, G. Umana-Membreno, J. Antoszewski, W. Lei, R. Gu, H. Kala, Nima Dehdashtiakhavan, L. Faraone","doi":"10.1117/12.2645270","DOIUrl":null,"url":null,"abstract":"High performance infrared (IR) sensing and imaging systems require IR optoelectronic detectors that have a high signal-to-noise ratio (SNR) and a fast response time, and that can be readily hybridised to CMOS read-out integrated circuits (ROICs). From a device point of view, this translates to p-n junction photovoltaic detectors based on narrow bandgap semiconductors with a high quantum efficiency (signal) and low dark current (noise). These requirements limit the choice of possible semiconductors to those having an appropriate bandgap that matches the wavelength band of interest combined with a high optical absorption coefficient and a long minority carrier diffusion length, which corresponds to a large mobility-lifetime product for photogenerated minority carriers. Technological constraints and modern clean-room fabrication processes necessitate that IR detector technologies are generally based on thin-film narrow bandgap semiconductors that have been epitaxially grown on lattice-matched wider bandgap IR-transparent substrates. The basic semiconductor material properties have led to InGaAs (in the SWIR up to 1.7 microns), InSb (in the MWIR up to 5 microns), and HgCdTe (in the eSWIR, MWIR and LWIR wavelength bands) being the dominant IR detector technologies for high performance applications. In this paper, the current technological limitations of HgCdTe-based technologies will be discussed with a view towards developing future pathways for the development of next-generation IR imaging arrays having the features of larger imaging array format and smaller pixel pitch, higher pixel yield and operability, higher quantum efficiency (QE), higher operating temperature (HOT), and dramatically lower per-unit cost.","PeriodicalId":52940,"journal":{"name":"Security and Defence Quarterly","volume":"194 1","pages":"1227102 - 1227102-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Defence Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2645270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

High performance infrared (IR) sensing and imaging systems require IR optoelectronic detectors that have a high signal-to-noise ratio (SNR) and a fast response time, and that can be readily hybridised to CMOS read-out integrated circuits (ROICs). From a device point of view, this translates to p-n junction photovoltaic detectors based on narrow bandgap semiconductors with a high quantum efficiency (signal) and low dark current (noise). These requirements limit the choice of possible semiconductors to those having an appropriate bandgap that matches the wavelength band of interest combined with a high optical absorption coefficient and a long minority carrier diffusion length, which corresponds to a large mobility-lifetime product for photogenerated minority carriers. Technological constraints and modern clean-room fabrication processes necessitate that IR detector technologies are generally based on thin-film narrow bandgap semiconductors that have been epitaxially grown on lattice-matched wider bandgap IR-transparent substrates. The basic semiconductor material properties have led to InGaAs (in the SWIR up to 1.7 microns), InSb (in the MWIR up to 5 microns), and HgCdTe (in the eSWIR, MWIR and LWIR wavelength bands) being the dominant IR detector technologies for high performance applications. In this paper, the current technological limitations of HgCdTe-based technologies will be discussed with a view towards developing future pathways for the development of next-generation IR imaging arrays having the features of larger imaging array format and smaller pixel pitch, higher pixel yield and operability, higher quantum efficiency (QE), higher operating temperature (HOT), and dramatically lower per-unit cost.
用于红外传感和焦平面阵列成像的窄带隙碲化镓技术
高性能红外(IR)传感和成像系统要求红外光电探测器具有高信噪比(SNR)和快速响应时间,并且可以很容易地混合到CMOS读出集成电路(roic)中。从器件的角度来看,这转化为基于窄带隙半导体的p-n结光伏探测器,具有高量子效率(信号)和低暗电流(噪声)。这些要求限制了可能的半导体的选择,使其具有与感兴趣的波长带相匹配的适当带隙,并结合高光吸收系数和较长的少数载流子扩散长度,这对应于光生少数载流子的大迁移寿命产品。技术限制和现代洁净室制造工艺要求红外探测器技术通常基于薄膜窄带隙半导体,这种半导体已经在晶格匹配的宽带隙红外透明衬底上外延生长。半导体材料的基本特性导致InGaAs(在SWIR波段高达1.7微米),InSb(在MWIR波段高达5微米)和HgCdTe(在eSWIR, MWIR和LWIR波段)成为高性能应用的主要红外探测器技术。在本文中,将讨论当前基于hgcdte技术的技术限制,以期开发下一代红外成像阵列的未来途径,这些成像阵列具有更大的成像阵列格式和更小的像素间距,更高的像素成品率和可操作性,更高的量子效率(QE),更高的工作温度(HOT),以及显著降低的单位成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
34
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信