Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification

Thee Chanyaswad, Mert Al, J. M. Chang, S. Kung
{"title":"Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification","authors":"Thee Chanyaswad, Mert Al, J. M. Chang, S. Kung","doi":"10.1109/MLSP.2017.8168177","DOIUrl":null,"url":null,"abstract":"In machine learning, feature engineering has been a pivotal stage in building a high-quality predictor. Particularly, this work explores the multiple Kernel Discriminant Component Analysis (mKDCA) feature-map and its variants. However, seeking the right subset of kernels for mKDCA feature-map can be challenging. Therefore, we consider the problem of kernel selection, and propose an algorithm based on Differential Mutual Information (DMI) and incremental forward search. DMI serves as an effective metric for selecting kernels, as is theoretically supported by mutual information and Fisher's discriminant analysis. On the other hand, incremental forward search plays a role in removing redundancy among kernels. Finally, we illustrate the potential of the method via an application in privacy-aware classification, and show on three mobile-sensing datasets that selecting an effective set of kernels for mKDCA feature-maps can enhance the utility classification performance, while successfully preserve the data privacy. Specifically, the results show that the proposed DMI forward search method can perform better than the state-of-the-art, and, with much smaller computational cost, can perform as well as the optimal, yet computationally expensive, exhaustive search.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In machine learning, feature engineering has been a pivotal stage in building a high-quality predictor. Particularly, this work explores the multiple Kernel Discriminant Component Analysis (mKDCA) feature-map and its variants. However, seeking the right subset of kernels for mKDCA feature-map can be challenging. Therefore, we consider the problem of kernel selection, and propose an algorithm based on Differential Mutual Information (DMI) and incremental forward search. DMI serves as an effective metric for selecting kernels, as is theoretically supported by mutual information and Fisher's discriminant analysis. On the other hand, incremental forward search plays a role in removing redundancy among kernels. Finally, we illustrate the potential of the method via an application in privacy-aware classification, and show on three mobile-sensing datasets that selecting an effective set of kernels for mKDCA feature-maps can enhance the utility classification performance, while successfully preserve the data privacy. Specifically, the results show that the proposed DMI forward search method can perform better than the state-of-the-art, and, with much smaller computational cost, can perform as well as the optimal, yet computationally expensive, exhaustive search.
差分互信息前向搜索多核鉴别成分选择及其在隐私保护分类中的应用
在机器学习中,特征工程是构建高质量预测器的关键阶段。特别地,本工作探讨了多核判别成分分析(mKDCA)特征映射及其变体。然而,为mKDCA特征映射寻找正确的内核子集可能具有挑战性。为此,我们考虑核选择问题,提出了一种基于差分互信息和增量前向搜索的核选择算法。DMI作为选择核的有效度量,在理论上得到互信息和Fisher判别分析的支持。另一方面,增量正向搜索在消除核之间的冗余方面发挥了作用。最后,我们通过在隐私感知分类中的应用说明了该方法的潜力,并在三个移动传感数据集上展示了为mKDCA特征图选择一组有效的核集可以提高效用分类性能,同时成功地保护了数据隐私。具体来说,结果表明,所提出的DMI前向搜索方法比目前的方法性能更好,并且计算成本要小得多,可以与最优的穷举搜索一样好,但计算成本很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信