Granger causality procedeture to diagnosis and failture in industrial systems

Oscar F. BECERRA-ANGARITA, Yuli A. ALVAREZ-PIZARRO
{"title":"Granger causality procedeture to diagnosis and failture in industrial systems","authors":"Oscar F. BECERRA-ANGARITA, Yuli A. ALVAREZ-PIZARRO","doi":"10.48082/espacios-a22v43n07p03","DOIUrl":null,"url":null,"abstract":"Industrial process supervision is an important subject now days due to the increased requirement for safer processes for operators and effective for companies. Control loops affected by disturbs, are grouped with PCA, based on their increased variability and the causal relationships between them are detected via Granger causality. A graph drawing algorithm allows indicating the source of the disturbance. The procedure is applied to data from a simulated chemical process CSTR. The proposed procedeture correctly indicated the sources of disturbances.","PeriodicalId":32522,"journal":{"name":"Revista de Geografia Espacios","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Geografia Espacios","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48082/espacios-a22v43n07p03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial process supervision is an important subject now days due to the increased requirement for safer processes for operators and effective for companies. Control loops affected by disturbs, are grouped with PCA, based on their increased variability and the causal relationships between them are detected via Granger causality. A graph drawing algorithm allows indicating the source of the disturbance. The procedure is applied to data from a simulated chemical process CSTR. The proposed procedeture correctly indicated the sources of disturbances.
格兰杰因果程序在工业系统的诊断和故障
工业过程监督是一个重要的主题,现在由于对操作员和公司更安全的过程的要求增加。受干扰影响的控制回路根据其增加的变异性与PCA分组,并通过格兰杰因果关系检测它们之间的因果关系。图形绘制算法允许指示干扰的来源。该方法应用于模拟化学过程CSTR的数据。所提出的程序正确地指出了干扰的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信