Power-translation invariance in discrete groups—A characterization of finite Hamiltonian groups

William R. Emerson
{"title":"Power-translation invariance in discrete groups—A characterization of finite Hamiltonian groups","authors":"William R. Emerson","doi":"10.1016/S0021-9800(70)80051-5","DOIUrl":null,"url":null,"abstract":"<div><p>The primary result of this paper is the resolution of the question: Which non-Abelian discrete groups <em>G</em> satisfy (for some <em>n</em>&gt;1) |<em>(aS)<sup>n</sup></em>|=|<em>S<sup>n</sup></em>| for all <em>S G</em> and <em>a</em>∈<em>G</em>, (A<sub>n</sub>) where |*| denotes the counting measure and <em>S<sup>n</sup></em>={<em>s</em><sub>1</sub>…<em>s<sub>n</sub></em>:<em>s<sub>i</sub></em>∈<em>S</em>, 1≤<em>i</em>≤<em>n</em>}?</p><p>We prove that a discrete group <em>G</em> satisfies (A<sub>n</sub>) for some integer <em>n</em>&gt;1 iff <em>G</em> is a finite Hamiltonian group. Furthermore, if γ denotes the invariant defined for finite Abelian groups introduced in [1] and <em>H</em> is any finite Hamiltonian group, then <em>H</em> satisfies (A<sub>n</sub>) iff γ(<em>H′</em>)≥<em>n</em>, where <em>H′</em> denotes the unique (up to isomorphism) maximal Abelian subgroup of <em>H</em>. In the course of this development a number of results concerning finite Hamiltonian groups are obtained. We conclude with a section on related conditions as well as a discussion of the general locally compact case.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 1","pages":"Pages 6-26"},"PeriodicalIF":0.0000,"publicationDate":"1970-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80051-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primary result of this paper is the resolution of the question: Which non-Abelian discrete groups G satisfy (for some n>1) |(aS)n|=|Sn| for all S G and aG, (An) where |*| denotes the counting measure and Sn={s1sn:siS, 1≤in}?

We prove that a discrete group G satisfies (An) for some integer n>1 iff G is a finite Hamiltonian group. Furthermore, if γ denotes the invariant defined for finite Abelian groups introduced in [1] and H is any finite Hamiltonian group, then H satisfies (An) iff γ(H′)≥n, where H′ denotes the unique (up to isomorphism) maximal Abelian subgroup of H. In the course of this development a number of results concerning finite Hamiltonian groups are obtained. We conclude with a section on related conditions as well as a discussion of the general locally compact case.

离散群中的幂平移不变性——有限哈密顿群的一个表征
本文的主要结果是解决了以下问题:对于所有S G和a∈G, (An),哪个非阿贝尔离散群G满足(对某些n>1) |(aS)n|=|Sn|,其中|*|表示计数测度,Sn={s1…Sn:si∈S, 1≤i≤n}?证明了离散群G对整数n>1满足(An),如果G是有限哈密顿群。进一步,如果γ表示[1]中引入的有限阿贝尔群的不变量,且H是任意有限哈密顿群,则H满足(An) iff γ(H ')≥n,其中H '表示H的唯一(直到同构)极大阿贝尔子群。在此发展过程中得到了关于有限哈密顿群的若干结果。我们以有关条件的一节以及对一般局部紧情况的讨论来结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信