Impact of Uncertainties of Fundamental Models on Simulated Silicon Solar Cell Efficiencies

S. Wasmer, A. Fell, J. Greulich
{"title":"Impact of Uncertainties of Fundamental Models on Simulated Silicon Solar Cell Efficiencies","authors":"S. Wasmer, A. Fell, J. Greulich","doi":"10.1109/PVSC.2018.8548137","DOIUrl":null,"url":null,"abstract":"We determine the uncertainties on simulated efficiencies of silicon solar cells due to uncertainties of the fundamental physical models. For this end, we refit well-known models of numerical device simulations in order to acquire the uncertainties of the model parameters from the underlying measurement data. In a metamodeling and Monte Carlo simulation study, we then deduce how these propagate to the simulated solar cell efficiency. This is done for 150 $\\mu$ m thick 1 $\\Omega$ cm p-type standard and advanced silicon passivated emitter and rear cells (PERC) and for the limiting efficiency of silicon solar cells. We find uncertainties given by one standard deviation of 0.021%abs for usual PERC solar cells and 0.068%abs in case of the limiting efficiency. In a variance based sensitivity analysis, we find the uncertainties of the model parameters of the Auger recombination and the minority charge carrier mobility to contribute the most to the efficiency uncertainty. Besides these, we determine comparably large efficiency discrepancies of up to 0.6%abs for the two most prominent bandgap narrowing models, highlighting the necessity of further research on this topic.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"3 1","pages":"2658-2662"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8548137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We determine the uncertainties on simulated efficiencies of silicon solar cells due to uncertainties of the fundamental physical models. For this end, we refit well-known models of numerical device simulations in order to acquire the uncertainties of the model parameters from the underlying measurement data. In a metamodeling and Monte Carlo simulation study, we then deduce how these propagate to the simulated solar cell efficiency. This is done for 150 $\mu$ m thick 1 $\Omega$ cm p-type standard and advanced silicon passivated emitter and rear cells (PERC) and for the limiting efficiency of silicon solar cells. We find uncertainties given by one standard deviation of 0.021%abs for usual PERC solar cells and 0.068%abs in case of the limiting efficiency. In a variance based sensitivity analysis, we find the uncertainties of the model parameters of the Auger recombination and the minority charge carrier mobility to contribute the most to the efficiency uncertainty. Besides these, we determine comparably large efficiency discrepancies of up to 0.6%abs for the two most prominent bandgap narrowing models, highlighting the necessity of further research on this topic.
基本模型的不确定性对模拟硅太阳能电池效率的影响
由于基本物理模型的不确定性,我们确定了硅太阳能电池模拟效率的不确定性。为此,我们对众所周知的数值器件模拟模型进行了改造,以便从潜在的测量数据中获得模型参数的不确定性。在元建模和蒙特卡罗模拟研究中,我们然后推断这些如何传播到模拟的太阳能电池效率。这是针对150 $\mu$ m厚1 $\Omega$ cm p型标准和先进的硅钝化发射极和后部电池(PERC)以及硅太阳能电池的极限效率进行的。我们发现一个标准差为0.021的不确定性%abs for usual PERC solar cells and 0.068%abs in case of the limiting efficiency. In a variance based sensitivity analysis, we find the uncertainties of the model parameters of the Auger recombination and the minority charge carrier mobility to contribute the most to the efficiency uncertainty. Besides these, we determine comparably large efficiency discrepancies of up to 0.6%abs for the two most prominent bandgap narrowing models, highlighting the necessity of further research on this topic.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信