Toshihiro Yoshimura, K. Kurogi, Ming-Cheh Liu, M. Suiko, Y. Sakakibara
{"title":"A proteomic approach for the analysis of S-nitrosylated proteins using a fluorescence labeling technique","authors":"Toshihiro Yoshimura, K. Kurogi, Ming-Cheh Liu, M. Suiko, Y. Sakakibara","doi":"10.2198/JELECTROPH.60.5","DOIUrl":null,"url":null,"abstract":"S-nitrosylation, a post-translational modification of the thiol group of cysteine residues by nitric oxide (NO), has emerged as a new mode of signal transduction and regulation of protein function. It has recently been shown that S-nitrosylation may result in various protein dysfunctions. However, an improved S-nitrosylation analysis method is needed to achieve high sensitivity and quantitative accuracy. We hypothesized that an analysis method using fluorescence dye could detect S-nitrosylated proteins at a higher sensitivity than that of the conventional method. In this study, we developed a procedure for analyzing S-nitrosylated proteins using CyDye (the CyDye switch method). This CyDye switch method for detecting S-nitrosylated proteins was developed based on the biotin-switch method for analyzing S-nitrosylated proteins. We analyzed NO donor-induced S-nitrosylated proteins in a model protein and at the cellular level. We demonstrated that this CyDye switch method could detect specific S-nitrosylated proteins using SDS-PAGE and mass spectrometry. Our results indicate that the optimized CyDye switch method is suitable for the detection of the post-translational S-nitrosylation of proteins.","PeriodicalId":15059,"journal":{"name":"Journal of capillary electrophoresis","volume":"36 1","pages":"5-14"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of capillary electrophoresis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2198/JELECTROPH.60.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
S-nitrosylation, a post-translational modification of the thiol group of cysteine residues by nitric oxide (NO), has emerged as a new mode of signal transduction and regulation of protein function. It has recently been shown that S-nitrosylation may result in various protein dysfunctions. However, an improved S-nitrosylation analysis method is needed to achieve high sensitivity and quantitative accuracy. We hypothesized that an analysis method using fluorescence dye could detect S-nitrosylated proteins at a higher sensitivity than that of the conventional method. In this study, we developed a procedure for analyzing S-nitrosylated proteins using CyDye (the CyDye switch method). This CyDye switch method for detecting S-nitrosylated proteins was developed based on the biotin-switch method for analyzing S-nitrosylated proteins. We analyzed NO donor-induced S-nitrosylated proteins in a model protein and at the cellular level. We demonstrated that this CyDye switch method could detect specific S-nitrosylated proteins using SDS-PAGE and mass spectrometry. Our results indicate that the optimized CyDye switch method is suitable for the detection of the post-translational S-nitrosylation of proteins.