Mining multidimensional contextual outliers from categorical relational data

Guanting Tang, J. Bailey, J. Pei, Guozhu Dong
{"title":"Mining multidimensional contextual outliers from categorical relational data","authors":"Guanting Tang, J. Bailey, J. Pei, Guozhu Dong","doi":"10.1145/2484838.2484883","DOIUrl":null,"url":null,"abstract":"A wide range of methods have been proposed for detecting different types of outliers in full space and subspaces. However, the interpretability of outliers, that is, explaining in what ways and to what extent an object is an outlier, remains a critical open issue. In this paper, we develop a notion of contextual outliers on categorical data. Intuitively, a contextual outlier is a small group of objects that share strong similarity with a significantly larger reference group of objects on some attributes, but deviate dramatically on some other attributes. We develop a detection algorithm, and conduct experiments to evaluate our approach.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"15 1","pages":"43:1-43:4"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484838.2484883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

A wide range of methods have been proposed for detecting different types of outliers in full space and subspaces. However, the interpretability of outliers, that is, explaining in what ways and to what extent an object is an outlier, remains a critical open issue. In this paper, we develop a notion of contextual outliers on categorical data. Intuitively, a contextual outlier is a small group of objects that share strong similarity with a significantly larger reference group of objects on some attributes, but deviate dramatically on some other attributes. We develop a detection algorithm, and conduct experiments to evaluate our approach.
从分类关系数据中挖掘多维上下文离群值
为了在全空间和子空间中检测不同类型的异常值,已经提出了各种各样的方法。然而,异常值的可解释性,即以何种方式和在何种程度上解释一个对象是异常值,仍然是一个关键的开放问题。在本文中,我们提出了一个关于分类数据的上下文异常值的概念。直观地说,上下文离群值是一小组对象,它们在某些属性上与一个大得多的对象参考组具有很强的相似性,但在其他一些属性上却大相径庭。我们开发了一种检测算法,并进行了实验来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信