Adaptive Indexing of Objects with Spatial Extent

Fatemeh Zardbani, N. Mamoulis, Stratos Idreos, Panagiotis Karras
{"title":"Adaptive Indexing of Objects with Spatial Extent","authors":"Fatemeh Zardbani, N. Mamoulis, Stratos Idreos, Panagiotis Karras","doi":"10.14778/3598581.3598596","DOIUrl":null,"url":null,"abstract":"\n Can we quickly explore large multidimensional data in main memory?\n Adaptive indexing\n responds to this need by building an index incrementally, in response to queries; in its default form, it indexes a single attribute or, in the presence of several attributes, one attribute per index level. Unfortunately, this approach falters when indexing spatial data objects, encountered in data exploration tasks involving multidimensional range queries. In this paper, we introduce the Adaptive Incremental R-tree (AIR-tree): the first method for the adaptive indexing of non-point spatial objects; the AIR-tree incrementally and progressively constructs an in-memory spatial index over a static array, in response to incoming queries, using a suite of heuristics for creating and splitting nodes. Our thorough experimental study on synthetic and real data and workloads shows that the AIR-tree consistently outperforms prior adaptive indexing methods focusing on multidimensional points and a pre-built static R-tree in cumulative time over at least the first thousand queries.\n","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3598581.3598596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Can we quickly explore large multidimensional data in main memory? Adaptive indexing responds to this need by building an index incrementally, in response to queries; in its default form, it indexes a single attribute or, in the presence of several attributes, one attribute per index level. Unfortunately, this approach falters when indexing spatial data objects, encountered in data exploration tasks involving multidimensional range queries. In this paper, we introduce the Adaptive Incremental R-tree (AIR-tree): the first method for the adaptive indexing of non-point spatial objects; the AIR-tree incrementally and progressively constructs an in-memory spatial index over a static array, in response to incoming queries, using a suite of heuristics for creating and splitting nodes. Our thorough experimental study on synthetic and real data and workloads shows that the AIR-tree consistently outperforms prior adaptive indexing methods focusing on multidimensional points and a pre-built static R-tree in cumulative time over at least the first thousand queries.
具有空间范围的对象自适应索引
我们能否快速探索主存中的大型多维数据?自适应索引通过增量地构建索引来响应查询,从而满足了这种需求;在其默认形式中,它索引单个属性,或者在存在多个属性时,每个索引级别索引一个属性。不幸的是,在涉及多维范围查询的数据探索任务中,这种方法在索引空间数据对象时会出现问题。本文介绍了自适应增量r树(AIR-tree)——非点空间目标自适应索引的第一种方法;AIR-tree使用一套用于创建和分割节点的启发式方法,逐步地在静态数组上构建内存中的空间索引,以响应传入的查询。我们对合成数据和真实数据以及工作负载的全面实验研究表明,在至少前1000次查询的累积时间内,AIR-tree始终优于先前关注多维点的自适应索引方法和预构建的静态R-tree。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信