{"title":"A Study on Internet of Things Devices Vulnerabilities using Shodan","authors":"V. Rajasekar, S. Rajkumar","doi":"10.47839/ijc.22.2.3084","DOIUrl":null,"url":null,"abstract":"IoT has attracted a diverse range of applications due to its adaptability, flexibility, and scalability. However, the most significant barriers to IoT adoption are security, privacy, interoperability, and a lack of standards. Due to the persistent online connectivity and lack of security measures, adversaries can quickly attack IoT systems for various adversarial operations, financial gain, and access to sensitive data. We conducted a massive vulnerability scan on IoT devices using Shodan, the IoT search engine. The discovered vulnerabilities are analyzed using the Octave Allegro risk assessment method to determine the risk level (Critical, High, Moderate, Low, None), and the results are classified based on the vulnerabilities. The research findings are intriguing, shocking, and alarming, revealing the bitter reality that IoT devices are rapidly increasing while simultaneously eroding users' privacy on a never-before-seen scale. Our search discovered 13,558 webcams with outdated components, 11,090 devices disclosing NAT-PMP information, and 16,356 connected devices responding to remote telnet access. Around 2,456 IoT devices were found with the Heartbleed vulnerability, 674 with the Ticketbleed vulnerability, and 9,241 with expired SSL certificates. Nearly 18,638 IoT consumer devices are configured with insecure default settings; 11,481 devices with default SNMP agent community names; 4,987 devices running on non-standard ports; and 4,425 Cisco devices are configured with generic or default passwords.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.22.2.3084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
IoT has attracted a diverse range of applications due to its adaptability, flexibility, and scalability. However, the most significant barriers to IoT adoption are security, privacy, interoperability, and a lack of standards. Due to the persistent online connectivity and lack of security measures, adversaries can quickly attack IoT systems for various adversarial operations, financial gain, and access to sensitive data. We conducted a massive vulnerability scan on IoT devices using Shodan, the IoT search engine. The discovered vulnerabilities are analyzed using the Octave Allegro risk assessment method to determine the risk level (Critical, High, Moderate, Low, None), and the results are classified based on the vulnerabilities. The research findings are intriguing, shocking, and alarming, revealing the bitter reality that IoT devices are rapidly increasing while simultaneously eroding users' privacy on a never-before-seen scale. Our search discovered 13,558 webcams with outdated components, 11,090 devices disclosing NAT-PMP information, and 16,356 connected devices responding to remote telnet access. Around 2,456 IoT devices were found with the Heartbleed vulnerability, 674 with the Ticketbleed vulnerability, and 9,241 with expired SSL certificates. Nearly 18,638 IoT consumer devices are configured with insecure default settings; 11,481 devices with default SNMP agent community names; 4,987 devices running on non-standard ports; and 4,425 Cisco devices are configured with generic or default passwords.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.