{"title":"DESIGN AND DEVELOPMENT OF ADVANCED SIMILARITY MEASURE FOR RECONSTRUCTING GRN USING mRNA EXPRESSION PROFILES","authors":"S. A. Bhyratae, Neha Mangla","doi":"10.4015/s1016237222500247","DOIUrl":null,"url":null,"abstract":"Gene Regulatory Networks (GRNs) reconstruction aims to infer relationships of potential regulation among the genes. With the rapid growth of the biotechnology, such as Ribonucleic acid (RNA)-sequencing and gene chip microarray, the generated high-throughput data provide gene–gene interaction relationships with more opportunities based on gene expression data. Several approaches are introduced to reconstruct the GRNs, but low accuracy is a major drawback. Hence, this paper introduces the hybrid distance measure and the Pearson’s correlation coefficient for reconstructing GRN. The hybrid distance, such as Tversky index, Tanimoto similarity, and Minkowski distance, is employed to connect the edges. The asymmetric partial correlation network is introduced for determining two influence functions for every pair, and edge direction is determined among them. However, the direction of edges is unknown usually and seems difficult to be identified based on gene expression data. Thus, it extends the data processing inequality applying in the directed network for removing the transitive interactions. The influence value of every node is calculated for identifying the significant regulator. The performance of the proposed Hybrid Distance_Entropy based GRN Reconstruction method is analyzed in terms of correlation, reconstruction error, precision, and recall, which provides superior results with values 0.9450, 0.00052, 0.9095, and 0.8913 based on dataset-1.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"31 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gene Regulatory Networks (GRNs) reconstruction aims to infer relationships of potential regulation among the genes. With the rapid growth of the biotechnology, such as Ribonucleic acid (RNA)-sequencing and gene chip microarray, the generated high-throughput data provide gene–gene interaction relationships with more opportunities based on gene expression data. Several approaches are introduced to reconstruct the GRNs, but low accuracy is a major drawback. Hence, this paper introduces the hybrid distance measure and the Pearson’s correlation coefficient for reconstructing GRN. The hybrid distance, such as Tversky index, Tanimoto similarity, and Minkowski distance, is employed to connect the edges. The asymmetric partial correlation network is introduced for determining two influence functions for every pair, and edge direction is determined among them. However, the direction of edges is unknown usually and seems difficult to be identified based on gene expression data. Thus, it extends the data processing inequality applying in the directed network for removing the transitive interactions. The influence value of every node is calculated for identifying the significant regulator. The performance of the proposed Hybrid Distance_Entropy based GRN Reconstruction method is analyzed in terms of correlation, reconstruction error, precision, and recall, which provides superior results with values 0.9450, 0.00052, 0.9095, and 0.8913 based on dataset-1.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.