Quantified derandomization of linear threshold circuits

R. Tell
{"title":"Quantified derandomization of linear threshold circuits","authors":"R. Tell","doi":"10.1145/3188745.3188822","DOIUrl":null,"url":null,"abstract":"One of the prominent current challenges in complexity theory is the attempt to prove lower bounds for TC0, the class of constant-depth, polynomial-size circuits with majority gates. Relying on the results of Williams (2013), an appealing approach to prove such lower bounds is to construct a non-trivial derandomization algorithm for TC0. In this work we take a first step towards the latter goal, by proving the first positive results regarding the derandomization of TC0 circuits of depth d>2. Our first main result is a quantified derandomization algorithm for TC0 circuits with a super-linear number of wires. Specifically, we construct an algorithm that gets as input a TC0 circuit C over n input bits with depth d and n1+exp(−d) wires, runs in almost-polynomial-time, and distinguishes between the case that C rejects at most 2n1−1/5d inputs and the case that C accepts at most 2n1−1/5d inputs. In fact, our algorithm works even when the circuit C is a linear threshold circuit, rather than just a TC0 circuit (i.e., C is a circuit with linear threshold gates, which are stronger than majority gates). Our second main result is that even a modest improvement of our quantified derandomization algorithm would yield a non-trivial algorithm for standard derandomization of all of TC0, and would consequently imply that NEXP⊈TC0. Specifically, if there exists a quantified derandomization algorithm that gets as input a TC0 circuit with depth d and n1+O(1/d) wires (rather than n1+exp(−d) wires), runs in time at most 2nexp(−d), and distinguishes between the case that C rejects at most 2n1−1/5d inputs and the case that C accepts at most 2n1−1/5d inputs, then there exists an algorithm with running time 2n1−Ω(1) for standard derandomization of TC0.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

One of the prominent current challenges in complexity theory is the attempt to prove lower bounds for TC0, the class of constant-depth, polynomial-size circuits with majority gates. Relying on the results of Williams (2013), an appealing approach to prove such lower bounds is to construct a non-trivial derandomization algorithm for TC0. In this work we take a first step towards the latter goal, by proving the first positive results regarding the derandomization of TC0 circuits of depth d>2. Our first main result is a quantified derandomization algorithm for TC0 circuits with a super-linear number of wires. Specifically, we construct an algorithm that gets as input a TC0 circuit C over n input bits with depth d and n1+exp(−d) wires, runs in almost-polynomial-time, and distinguishes between the case that C rejects at most 2n1−1/5d inputs and the case that C accepts at most 2n1−1/5d inputs. In fact, our algorithm works even when the circuit C is a linear threshold circuit, rather than just a TC0 circuit (i.e., C is a circuit with linear threshold gates, which are stronger than majority gates). Our second main result is that even a modest improvement of our quantified derandomization algorithm would yield a non-trivial algorithm for standard derandomization of all of TC0, and would consequently imply that NEXP⊈TC0. Specifically, if there exists a quantified derandomization algorithm that gets as input a TC0 circuit with depth d and n1+O(1/d) wires (rather than n1+exp(−d) wires), runs in time at most 2nexp(−d), and distinguishes between the case that C rejects at most 2n1−1/5d inputs and the case that C accepts at most 2n1−1/5d inputs, then there exists an algorithm with running time 2n1−Ω(1) for standard derandomization of TC0.
线性阈值电路的量化非随机化
复杂性理论当前的一个突出挑战是试图证明TC0的下界,TC0是一类具有多数门的等深度、多项式大小的电路。根据Williams(2013)的结果,证明这种下界的一个吸引人的方法是为TC0构建一个非平凡的非随机化算法。在这项工作中,我们通过证明关于深度d>2的TC0电路的非随机化的第一个积极结果,向后一个目标迈出了第一步。我们的第一个主要成果是具有超线性导线数的TC0电路的量化非随机化算法。具体来说,我们构建了一种算法,该算法将TC0电路C作为输入,其深度为d和n1+exp(- d)线的n个输入位,在几乎多项式的时间内运行,并区分C拒绝最多2n1 - 1/5d输入的情况和C接受最多2n1 - 1/5d输入的情况。实际上,即使电路C是线性阈值电路,而不仅仅是TC0电路(即,C是具有线性阈值门的电路,其强度大于多数门),我们的算法也能工作。我们的第二个主要结果是,即使对我们的量化非随机化算法进行适度的改进,也会产生一个非平凡的算法,用于所有TC0的标准非随机化,并且因此意味着NEXP - TC0。具体来说,如果存在一种量化的去随机化算法,该算法以深度为d的TC0电路和n1+O(1/d)根导线(而不是n1+exp(- d)根导线)为输入,运行时间最多为2nexp(- d),并区分C最多拒绝2n1−1/5d输入和C最多接受2n1−1/5d输入的情况,则存在一种运行时间为2n1−Ω(1)的TC0标准去随机化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信