{"title":"Computing Graph Edit Distance via Neural Graph Matching","authors":"Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, Hongtao Cheng","doi":"10.14778/3594512.3594514","DOIUrl":null,"url":null,"abstract":"\n Graph edit distance (GED) computation is a fundamental NP-hard problem in graph theory. Given a graph pair (\n G\n 1\n ,\n G\n 2\n ), GED is defined as the minimum number of primitive operations converting\n G\n 1\n to\n G\n 2\n . Early studies focus on search-based inexact algorithms such as A*-beam search, and greedy algorithms using bipartite matching due to its NP-hardness. They can obtain a sub-optimal solution by constructing an edit path (the sequence of operations that converts\n G\n 1\n to\n G\n 2\n ). Recent studies convert the GED between a given graph pair (\n G\n 1\n ,\n G\n 2\n ) into a similarity score in the range (0, 1) by a well designed function. Then machine learning models (mostly based on graph neural networks) are applied to predict the similarity score. They achieve a much higher numerical precision than the sub-optimal solutions found by classical algorithms. However, a major limitation is that these machine learning models cannot generate an edit path. They treat the GED computation as a pure regression task to bypass its intrinsic complexity, but ignore the essential task of converting\n G\n 1\n to\n G\n 2\n . This severely limits the interpretability and usability of the solution.\n \n \n In this paper, we propose a novel deep learning framework that solves the GED problem in a two-step manner: 1) The proposed graph neural network GEDGNN is in charge of predicting the GED value and a matching matrix; and 2) A post-processing algorithm based on\n k\n -best matching is used to derive\n k\n possible node matchings from the matching matrix generated by GEDGNN. The best matching will finally lead to a high-quality edit path. Extensive experiments are conducted on three real graph data sets and synthetic power-law graphs to demonstrate the effectiveness of our framework. Compared to the best result of existing GNN-based models, the mean absolute error (MAE) on GED value prediction decreases by 4.9% ~ 74.3%. Compared to the state-of-the-art searching algorithm Noah, the MAE on GED value based on edit path reduces by 53.6% ~ 88.1%.\n","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3594512.3594514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Graph edit distance (GED) computation is a fundamental NP-hard problem in graph theory. Given a graph pair (
G
1
,
G
2
), GED is defined as the minimum number of primitive operations converting
G
1
to
G
2
. Early studies focus on search-based inexact algorithms such as A*-beam search, and greedy algorithms using bipartite matching due to its NP-hardness. They can obtain a sub-optimal solution by constructing an edit path (the sequence of operations that converts
G
1
to
G
2
). Recent studies convert the GED between a given graph pair (
G
1
,
G
2
) into a similarity score in the range (0, 1) by a well designed function. Then machine learning models (mostly based on graph neural networks) are applied to predict the similarity score. They achieve a much higher numerical precision than the sub-optimal solutions found by classical algorithms. However, a major limitation is that these machine learning models cannot generate an edit path. They treat the GED computation as a pure regression task to bypass its intrinsic complexity, but ignore the essential task of converting
G
1
to
G
2
. This severely limits the interpretability and usability of the solution.
In this paper, we propose a novel deep learning framework that solves the GED problem in a two-step manner: 1) The proposed graph neural network GEDGNN is in charge of predicting the GED value and a matching matrix; and 2) A post-processing algorithm based on
k
-best matching is used to derive
k
possible node matchings from the matching matrix generated by GEDGNN. The best matching will finally lead to a high-quality edit path. Extensive experiments are conducted on three real graph data sets and synthetic power-law graphs to demonstrate the effectiveness of our framework. Compared to the best result of existing GNN-based models, the mean absolute error (MAE) on GED value prediction decreases by 4.9% ~ 74.3%. Compared to the state-of-the-art searching algorithm Noah, the MAE on GED value based on edit path reduces by 53.6% ~ 88.1%.