An Intelligent Video Surveillance System using Edge Computing based Deep Learning Model

Rudra Pratap Singh, Harshit Srivastava, Hitesh Gautam, Rohan Shukla, Rajendra Kumar Dwivedi
{"title":"An Intelligent Video Surveillance System using Edge Computing based Deep Learning Model","authors":"Rudra Pratap Singh, Harshit Srivastava, Hitesh Gautam, Rohan Shukla, Rajendra Kumar Dwivedi","doi":"10.1109/IDCIoT56793.2023.10053404","DOIUrl":null,"url":null,"abstract":"With the rapid increase in global data volume, various factors like low latency, high efficiency video surveillance is impossible to achieve in a centralized cloud computing model. Therefore, this paper proposes a distributed computing model for intelligent video surveillance system. This paper presents a smart video surveillance system which can execute Deep Learning algorithms in low power consumption embedded de vices. The proposed intelligent video surveillance system based on the edge computing consists of multi-camera for smart cities and homes. In general, the sending of original video surveillance data to the centralized computing model is too much time consuming and this will keep us far away to achieve our objective of real time data transmission so through this paper the edge computing technique is proposed, the idea is perform computation locally at the edge devices and then the computed data will be sent to the centralized computing model which is capable of performing the real time video surveillance by using the deep learning algorithm.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"1 1","pages":"439-444"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the rapid increase in global data volume, various factors like low latency, high efficiency video surveillance is impossible to achieve in a centralized cloud computing model. Therefore, this paper proposes a distributed computing model for intelligent video surveillance system. This paper presents a smart video surveillance system which can execute Deep Learning algorithms in low power consumption embedded de vices. The proposed intelligent video surveillance system based on the edge computing consists of multi-camera for smart cities and homes. In general, the sending of original video surveillance data to the centralized computing model is too much time consuming and this will keep us far away to achieve our objective of real time data transmission so through this paper the edge computing technique is proposed, the idea is perform computation locally at the edge devices and then the computed data will be sent to the centralized computing model which is capable of performing the real time video surveillance by using the deep learning algorithm.
基于边缘计算的深度学习模型的智能视频监控系统
随着全球数据量的快速增长,低延迟、高效率的视频监控在集中式云计算模式下是不可能实现的。为此,本文提出了一种智能视频监控系统的分布式计算模型。提出了一种可以在低功耗嵌入式设备上执行深度学习算法的智能视频监控系统。提出了一种基于边缘计算的智能视频监控系统,该系统由多摄像头组成,适用于智慧城市和家庭。一般来说,将视频监控原始数据发送到集中计算模型耗时太长,这将使我们远离实时数据传输的目标,因此本文提出了边缘计算技术。其思想是在边缘设备上进行局部计算,然后将计算出的数据发送到能够使用深度学习算法进行实时视频监控的集中计算模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
5689
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信