Adaptive space–time finite element methods for parabolic optimal control problems

IF 3.8 2区 数学 Q1 MATHEMATICS
U. Langer, Andreas Schafelner
{"title":"Adaptive space–time finite element methods for parabolic optimal control problems","authors":"U. Langer, Andreas Schafelner","doi":"10.1515/jnma-2021-0059","DOIUrl":null,"url":null,"abstract":"Abstract We present, analyze, and test locally stabilized space–time finite element methods on fully unstructured simplicial space–time meshes for the numerical solution of space–time tracking parabolic optimal control problems with the standard L2-regularization.We derive a priori discretization error estimates in terms of the local mesh-sizes for shape-regular meshes. The adaptive version is driven by local residual error indicators, or, alternatively, by local error indicators derived from a new functional a posteriori error estimator. The latter provides a guaranteed upper bound of the error, but is more costly than the residual error indicators. We perform numerical tests for benchmark examples having different features. In particular, we consider a discontinuous target in form of a first expanding and then contracting ball in 3d that is fixed in the 4d space– time cylinder.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0059","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract We present, analyze, and test locally stabilized space–time finite element methods on fully unstructured simplicial space–time meshes for the numerical solution of space–time tracking parabolic optimal control problems with the standard L2-regularization.We derive a priori discretization error estimates in terms of the local mesh-sizes for shape-regular meshes. The adaptive version is driven by local residual error indicators, or, alternatively, by local error indicators derived from a new functional a posteriori error estimator. The latter provides a guaranteed upper bound of the error, but is more costly than the residual error indicators. We perform numerical tests for benchmark examples having different features. In particular, we consider a discontinuous target in form of a first expanding and then contracting ball in 3d that is fixed in the 4d space– time cylinder.
抛物型最优控制问题的自适应时空有限元方法
摘要针对具有标准l2正则化的时空跟踪抛物型最优控制问题的数值解,提出、分析并验证了完全非结构简单时空网格上的局部稳定时空有限元方法。对于形状规则网格,我们导出了基于局部网格尺寸的先验离散化误差估计。自适应版本由局部残差指标驱动,或者由新的函数后验误差估计器派生的局部误差指标驱动。后者提供了一个保证的误差上界,但比剩余误差指示器代价更大。我们对具有不同特征的基准示例进行了数值测试。特别地,我们考虑了固定在四维时空柱体上的三维先胀后缩球形式的不连续目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信