Characteristic of Permeability with the Sand, Calcium Bentonite and Solidifier Mixtures according to Selective Reaction of TCE

IF 0.4 Q4 ENGINEERING, GEOLOGICAL
S. Yun, JeongSu Choi, Minah Oh, Jai-Young Lee
{"title":"Characteristic of Permeability with the Sand, Calcium Bentonite and Solidifier Mixtures according to Selective Reaction of TCE","authors":"S. Yun, JeongSu Choi, Minah Oh, Jai-Young Lee","doi":"10.12814/JKGSS.2020.19.1.025","DOIUrl":null,"url":null,"abstract":"To improvement the swelling characteristics of the existing cutoff wall against the moisture, the permeability of the sand, calcium bentonite and solidifier mixture according to the contact with trichloroethylene (TCE) was evaluated. Characteristics analysis and the permeability test of the research materials were performed. The permeability was decreased as the mixing ratio of the calcium bentonite was increased and it was increased as the mixing ratio of the solidifier was increased. In conclusion, when mixing 15% of calcium bentonite and more than 30% of solidifier, the permeability coefficient in the underground water movement was analyzed as more than α × 10 cm/sec showing that it does not block the underground water movement. In addition, as the permeability coefficient of mixtures after TCE reaction was analyzed as less than α × 10 cm/sec, it satisfied the condition of blocking layer (less than 1.0 × 10 cm/sec). Therefore, the calcium bentonite and solidifier can be utilized as barrier that showing the characteristic of percolation ability conversion in soil and underground water contaminated with TCE.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":"26 1","pages":"25-33"},"PeriodicalIF":0.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Geosynthetic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12814/JKGSS.2020.19.1.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

Abstract

To improvement the swelling characteristics of the existing cutoff wall against the moisture, the permeability of the sand, calcium bentonite and solidifier mixture according to the contact with trichloroethylene (TCE) was evaluated. Characteristics analysis and the permeability test of the research materials were performed. The permeability was decreased as the mixing ratio of the calcium bentonite was increased and it was increased as the mixing ratio of the solidifier was increased. In conclusion, when mixing 15% of calcium bentonite and more than 30% of solidifier, the permeability coefficient in the underground water movement was analyzed as more than α × 10 cm/sec showing that it does not block the underground water movement. In addition, as the permeability coefficient of mixtures after TCE reaction was analyzed as less than α × 10 cm/sec, it satisfied the condition of blocking layer (less than 1.0 × 10 cm/sec). Therefore, the calcium bentonite and solidifier can be utilized as barrier that showing the characteristic of percolation ability conversion in soil and underground water contaminated with TCE.
基于TCE选择性反应的砂、钙基膨润土和固化剂混合物渗透性特性研究
为了改善现有防渗墙的抗湿膨胀特性,根据与三氯乙烯(TCE)的接触程度,对砂、钙基膨润土和固化剂混合物的渗透性进行了评价。对研究材料进行了特性分析和透气性测试。渗透率随钙基膨润土掺量的增加而降低,随固化剂掺量的增加而增加。综上所述,当钙基膨润土掺量为15%时,固化剂掺量大于30%时,地下水运移的渗透系数大于α × 10 cm/sec,表明其对地下水运移没有阻断作用。此外,分析了TCE反应后混合物的渗透系数小于α × 10 cm/sec,满足阻塞层条件(小于1.0 × 10 cm/sec)。因此,钙基膨润土和固化剂可以作为屏障,在TCE污染的土壤和地下水中表现出渗透能力转化的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
20.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信