Green Synthesis of Calcium/Iron-Layered Double Hydroxides-Sodium Alginate Nanoadsorbent as Reactive Barrier for Antibiotic Amoxicillin Removal from Groundwater
{"title":"Green Synthesis of Calcium/Iron-Layered Double Hydroxides-Sodium Alginate Nanoadsorbent as Reactive Barrier for Antibiotic Amoxicillin Removal from Groundwater","authors":"Marwa F. Abed, Ayad A. H. Faisal","doi":"10.1155/2023/1475278","DOIUrl":null,"url":null,"abstract":"This work uses a new nanoadsorbent after chemically synthesis from chicken eggshell wastes for removing amoxicillin (AMX) from aqueous solution. This removal was examined as a time function, initial concentration of AMX, pH, agitation speed, and adsorbent dosage. The study achieved the optimum time for equilibration in (90) min, at \n \n pH\n =\n 7\n \n with an adsorbent dosage of 1.2 g. We applied many kinetic models to the sorption kinetic data where the pseudo-second-order model (\n \n \n \n R\n \n \n 2\n \n \n =\n 0.9924\n \n ) was used to interpret the gained data at a rate constant K2 of (0.0077) g/(mg. min) at 200 rpm. Moreover, the adsorption calculated amount reached the experimentally required value and isotherm data best fitted the Langmuir model with \n \n \n \n R\n \n \n 2\n \n \n \n (≥0.9486) than the Freundlich model. The intraparticle diffusion model revealed a diffusion dependent process. The different functional sets on the calcium/iron-surface as a layered double hydroxide (Ca/Fe)-LDH were important in sorpting the selected antibiotic. Forming (Ca/Fe)-LDH nanoparticles in the manufactured beads interacted with polluted water confirming that the nanoparticles own the prospective for acting as a latent sorbent to remove contaminants from aquatic media.","PeriodicalId":7279,"journal":{"name":"Adsorption Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1475278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This work uses a new nanoadsorbent after chemically synthesis from chicken eggshell wastes for removing amoxicillin (AMX) from aqueous solution. This removal was examined as a time function, initial concentration of AMX, pH, agitation speed, and adsorbent dosage. The study achieved the optimum time for equilibration in (90) min, at
pH
=
7
with an adsorbent dosage of 1.2 g. We applied many kinetic models to the sorption kinetic data where the pseudo-second-order model (
R
2
=
0.9924
) was used to interpret the gained data at a rate constant K2 of (0.0077) g/(mg. min) at 200 rpm. Moreover, the adsorption calculated amount reached the experimentally required value and isotherm data best fitted the Langmuir model with
R
2
(≥0.9486) than the Freundlich model. The intraparticle diffusion model revealed a diffusion dependent process. The different functional sets on the calcium/iron-surface as a layered double hydroxide (Ca/Fe)-LDH were important in sorpting the selected antibiotic. Forming (Ca/Fe)-LDH nanoparticles in the manufactured beads interacted with polluted water confirming that the nanoparticles own the prospective for acting as a latent sorbent to remove contaminants from aquatic media.