Discovering trending phrases on information streams

K. Kamath, James Caverlee
{"title":"Discovering trending phrases on information streams","authors":"K. Kamath, James Caverlee","doi":"10.1145/2063576.2063937","DOIUrl":null,"url":null,"abstract":"We study the problem of efficient discovery of trending phrases from high-volume text streams -- be they sequences of Twitter messages, email messages, news articles, or other time-stamped text documents. Most existing approaches return top-k trending phrases. But, this approach neither guarantees that the top-k phrases returned are all trending, nor that all trending phrases are returned. In addition, the value of k is difficult to set and is indifferent to stream dynamics. Hence, we propose an approach that identifies all the trending phrases in a stream and is flexible to the changing stream properties.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"23 1","pages":"2245-2248"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study the problem of efficient discovery of trending phrases from high-volume text streams -- be they sequences of Twitter messages, email messages, news articles, or other time-stamped text documents. Most existing approaches return top-k trending phrases. But, this approach neither guarantees that the top-k phrases returned are all trending, nor that all trending phrases are returned. In addition, the value of k is difficult to set and is indifferent to stream dynamics. Hence, we propose an approach that identifies all the trending phrases in a stream and is flexible to the changing stream properties.
发现信息流上的流行短语
我们研究了从大量文本流中高效发现趋势短语的问题——无论是Twitter消息序列、电子邮件消息、新闻文章还是其他带时间戳的文本文档。大多数现有的方法返回前k个趋势短语。但是,这种方法既不能保证返回的前k个短语都是趋势短语,也不能保证返回所有趋势短语。此外,k的值难以设定,与流动力学无关。因此,我们提出了一种方法,可以识别流中的所有趋势短语,并对不断变化的流属性具有灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信