Electrochemical High-Performance Hybrid Supercapacitors of Carbon Nanosphere Doped 3D Zr (II) Linked 4-{[(1E)-1-Hydroxy-3-Oxoprop-1-En-2-Yl]Sulfanyl}Benzoic Acid Metal Organic Frameworks
Santosh S Nandi, V. Adimule, S. S. Kerur, Abhinay Gupta, Sateesh Hosmane, S. Batakurki
{"title":"Electrochemical High-Performance Hybrid Supercapacitors of Carbon Nanosphere Doped 3D Zr (II) Linked 4-{[(1E)-1-Hydroxy-3-Oxoprop-1-En-2-Yl]Sulfanyl}Benzoic Acid Metal Organic Frameworks","authors":"Santosh S Nandi, V. Adimule, S. S. Kerur, Abhinay Gupta, Sateesh Hosmane, S. Batakurki","doi":"10.4028/p-44gvkk","DOIUrl":null,"url":null,"abstract":"In the present research work, carbon nanosphere (5 wt. %, 10 wt. % and 15 wt. %)/Zr- based metal organic frame works (CNS: Zr (II)-MOFs) with different molar ratios of the legend 4-{[(1E)-1-Hydroxy-3-Oxoprop-1-En-2-yl] Sulfanyl} Benzoic Acid (HOSBA) have been successfully synthesized by hydrothermal method. Studies using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) have validated certain structural, optical, and morphological features. The supercapacitance performance of the synthesized MOFs was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). At a current density of 0.5 A g-1 and at a scan rate of 10 mV/s, the 15% CNS doped Zr-MOF demonstrated highest specific capacitance (Cs) of 239.4 F g-1. 15 wt.% CNS doped Zr-MOF proven power density of 2100 W kg-1 and maximum energy density of 14.82 Wh Kg-1 with capacitive retention of 77.63 % following 2000 cycles mark this combination a good for supercapacitors (SCs) material. Regardless of the synthetic conditions, we achieved MOFs which exhibited hetero structure formation with spherical morphologies. The results open us new and energy approach for the supercapacitor of the Zr-metal based MOFs and applications in the photonics, optoelectronics, and promising electrode material for electrochemical energy storage systems.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"252 1","pages":"87 - 100"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-44gvkk","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the present research work, carbon nanosphere (5 wt. %, 10 wt. % and 15 wt. %)/Zr- based metal organic frame works (CNS: Zr (II)-MOFs) with different molar ratios of the legend 4-{[(1E)-1-Hydroxy-3-Oxoprop-1-En-2-yl] Sulfanyl} Benzoic Acid (HOSBA) have been successfully synthesized by hydrothermal method. Studies using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) have validated certain structural, optical, and morphological features. The supercapacitance performance of the synthesized MOFs was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). At a current density of 0.5 A g-1 and at a scan rate of 10 mV/s, the 15% CNS doped Zr-MOF demonstrated highest specific capacitance (Cs) of 239.4 F g-1. 15 wt.% CNS doped Zr-MOF proven power density of 2100 W kg-1 and maximum energy density of 14.82 Wh Kg-1 with capacitive retention of 77.63 % following 2000 cycles mark this combination a good for supercapacitors (SCs) material. Regardless of the synthetic conditions, we achieved MOFs which exhibited hetero structure formation with spherical morphologies. The results open us new and energy approach for the supercapacitor of the Zr-metal based MOFs and applications in the photonics, optoelectronics, and promising electrode material for electrochemical energy storage systems.