{"title":"Design and optimization of 3D fast printed cellular structures","authors":"Luca Collini, Chiara Ursini, Ajeet Kumar","doi":"10.1002/mdp2.227","DOIUrl":null,"url":null,"abstract":"<p>This paper analyzes the effect of thin and thick walls on functional properties of 3D printed cell structures, designed from open cell structures inspired by the natural world. Different types of unit cells with the same density are introduced. The cells are studied in morphology and mechanical performance, in particular effective density, compressive stiffness, and energy absorption under cyclic loading. Material extrusion process with thermoplastic polyurethane filament is used as additive manufacturing technique, without any support structure. The designed printed cellular structures are studied numerically, using an advanced hyperelastic material model with hysteretic capacity, and experimentally by uniaxial compression testing for characterization of stiffness and energy absorption. The benefits and limitations of the method are highlighted.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mdp2.227","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper analyzes the effect of thin and thick walls on functional properties of 3D printed cell structures, designed from open cell structures inspired by the natural world. Different types of unit cells with the same density are introduced. The cells are studied in morphology and mechanical performance, in particular effective density, compressive stiffness, and energy absorption under cyclic loading. Material extrusion process with thermoplastic polyurethane filament is used as additive manufacturing technique, without any support structure. The designed printed cellular structures are studied numerically, using an advanced hyperelastic material model with hysteretic capacity, and experimentally by uniaxial compression testing for characterization of stiffness and energy absorption. The benefits and limitations of the method are highlighted.