Asymptotics of torus equivariant Szegö kernel on a compact CR manifold

IF 0.1 Q4 MATHEMATICS
Wei-Chuan Shen
{"title":"Asymptotics of torus equivariant Szegö kernel on a compact CR manifold","authors":"Wei-Chuan Shen","doi":"10.21915/bimas.2019303","DOIUrl":null,"url":null,"abstract":"For a compact CR manifold $(X,T^{1,0}X)$ of dimension $2n+1$, $n\\geq 2$, admitting a $S^1\\times T^d$ action, if the lattice point $(-p_1,\\cdots,-p_d)\\in\\mathbb{Z}^{d}$ is a regular value of the associate CR moment map $\\mu$, then we establish the asymptotic expansion of the torus equivariant Szegő kernel $\\Pi^{(0)}_{m,mp_1,\\cdots,mp_d}(x,y)$ as $m\\to +\\infty$ under certain assumptions of the positivity of Levi form and the torus action on $Y:=\\mu^{-1}(-p_1,\\cdots,-p_d)$.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"27 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2019303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

For a compact CR manifold $(X,T^{1,0}X)$ of dimension $2n+1$, $n\geq 2$, admitting a $S^1\times T^d$ action, if the lattice point $(-p_1,\cdots,-p_d)\in\mathbb{Z}^{d}$ is a regular value of the associate CR moment map $\mu$, then we establish the asymptotic expansion of the torus equivariant Szegő kernel $\Pi^{(0)}_{m,mp_1,\cdots,mp_d}(x,y)$ as $m\to +\infty$ under certain assumptions of the positivity of Levi form and the torus action on $Y:=\mu^{-1}(-p_1,\cdots,-p_d)$.
紧CR流形上环面等变Szegö核的渐近性
一个紧凑的CR歧管 $(X,T^{1,0}X)$ 尺寸的 $2n+1$, $n\geq 2$,承认 $S^1\times T^d$ 作用,如果是格点 $(-p_1,\cdots,-p_d)\in\mathbb{Z}^{d}$ 是关联CR矩图的正则值 $\mu$,然后建立环面等变塞格格核的渐近展开式 $\Pi^{(0)}_{m,mp_1,\cdots,mp_d}(x,y)$ as $m\to +\infty$ 在列维形式的正性和环面作用的一定假设下 $Y:=\mu^{-1}(-p_1,\cdots,-p_d)$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信