A high-order numerical method for sediment transport problems simulation and its comparison with laboratory experiments

IF 0.9 Q3 MATHEMATICS, APPLIED
María Teresa Capilla Romá, Angel Balaguer-Beser, Beatriz Nácher-Rodríguez, Francisco J. Vallés-Morán
{"title":"A high-order numerical method for sediment transport problems simulation and its comparison with laboratory experiments","authors":"María Teresa Capilla Romá,&nbsp;Angel Balaguer-Beser,&nbsp;Beatriz Nácher-Rodríguez,&nbsp;Francisco J. Vallés-Morán","doi":"10.1002/cmm4.1151","DOIUrl":null,"url":null,"abstract":"<p>This article describes a high-order well-balanced central finite volume scheme for solving the coupled Exner−shallow water equations in one dimensional channels with rectangular section and variable width. Such numerical method may solve the proposed bedload sediment transport problem without the need to diagonalize the Jacobian matrix of flow. The numerical scheme uses a Runge–Kutta method with a fourth-order continuous natural extension for time discretization. The source term approximation is designed to verify the exact conservation property. Comparison of the numerical results for two accuracy tests have proved the stability and accuracy of the scheme. The results of the laboratory tests have also been used to calibrate different expressions of the solid transport discharge in the computer code. Two experimental tests have been carried out to study the erosive phenomenon and the consequent sediment transport: one test consisting of a triangular dune, and other caused by the effect of channel contraction.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1151","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article describes a high-order well-balanced central finite volume scheme for solving the coupled Exner−shallow water equations in one dimensional channels with rectangular section and variable width. Such numerical method may solve the proposed bedload sediment transport problem without the need to diagonalize the Jacobian matrix of flow. The numerical scheme uses a Runge–Kutta method with a fourth-order continuous natural extension for time discretization. The source term approximation is designed to verify the exact conservation property. Comparison of the numerical results for two accuracy tests have proved the stability and accuracy of the scheme. The results of the laboratory tests have also been used to calibrate different expressions of the solid transport discharge in the computer code. Two experimental tests have been carried out to study the erosive phenomenon and the consequent sediment transport: one test consisting of a triangular dune, and other caused by the effect of channel contraction.

泥沙输运问题的高阶数值模拟方法及其与室内实验的比较
本文描述了求解矩形变宽一维通道中耦合Exner -浅水方程的一种高阶平衡中心有限体积格式。这种数值方法可以解决所提出的河床输沙问题,而不需要对角化水流的雅可比矩阵。数值格式采用四阶连续自然扩展的龙格-库塔法进行时间离散。源项近似的设计是为了验证精确的守恒性质。两次精度试验的数值结果对比证明了该方案的稳定性和准确性。实验室试验的结果也被用来校正计算机程序中固体输运流量的不同表达式。为了研究泥沙的侵蚀现象和泥沙的输运,进行了两项试验:一项是由三角形沙丘组成的试验,另一项是由河道收缩作用引起的试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信