{"title":"J-PARC heavy ion experiment","authors":"T. Hachiya","doi":"10.1142/s0218301320400054","DOIUrl":null,"url":null,"abstract":"J-PARC Heavy Ion project (J-PARC-HI) is a future fixed target experiment to study the properties of the dense matter created by the heavy-ion collisions with 1–12[Formula: see text]AGeV/[Formula: see text] at J-PARC. This project aims to search for the QCD phase boundary and its critical endpoint and to study the equation of state of the dense matter at J-PARC. For this purpose, the high-intensity beam and the precision detector with high-speed DAQ are necessary. J-PARC will be upgraded to produce the world’s highest intensity of heavy-ion beam by adding a new compact heavy-ion linac and a booster ring and utilizing the existing RCS and MR synchrotrons. We will construct the multi-purpose spectrometer with a large acceptance to measure hadrons, dileptons and photons, and their correlations and fluctuations. In these proceedings, we will report the current status of the project, the design of the detector configuration, and detector R&D.","PeriodicalId":14032,"journal":{"name":"International Journal of Modern Physics E-nuclear Physics","volume":"34 1","pages":"2040005"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E-nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218301320400054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
J-PARC Heavy Ion project (J-PARC-HI) is a future fixed target experiment to study the properties of the dense matter created by the heavy-ion collisions with 1–12[Formula: see text]AGeV/[Formula: see text] at J-PARC. This project aims to search for the QCD phase boundary and its critical endpoint and to study the equation of state of the dense matter at J-PARC. For this purpose, the high-intensity beam and the precision detector with high-speed DAQ are necessary. J-PARC will be upgraded to produce the world’s highest intensity of heavy-ion beam by adding a new compact heavy-ion linac and a booster ring and utilizing the existing RCS and MR synchrotrons. We will construct the multi-purpose spectrometer with a large acceptance to measure hadrons, dileptons and photons, and their correlations and fluctuations. In these proceedings, we will report the current status of the project, the design of the detector configuration, and detector R&D.