A sub-1.55mV-accuracy 36.9ps-FOM digital-low-dropout regulator employing switched-capacitor resistance

Loai G. Salem, P. Mercier
{"title":"A sub-1.55mV-accuracy 36.9ps-FOM digital-low-dropout regulator employing switched-capacitor resistance","authors":"Loai G. Salem, P. Mercier","doi":"10.1109/ISSCC.2018.8310309","DOIUrl":null,"url":null,"abstract":"Modern DVFS-enabled SoCs require nimble supply regulators that rapidly respond to abrupt load changes and offer fine resolution (e.g., 12.5mV in [1], 10mV in [2]) over large voltage and current dynamic ranges. Switch-array digital LDOs (SA-DLDOs) are a potentially attractive regulation option due to their ability to operate with low input voltages and in part to their modular digital nature and scalability. SA-DLDOs employ 2” unary-[3] or binary-weighted [4] PMOS arrays that are modulated through a 1b or multi-bit ADCs to maintain the output voltage (V<inf>out</inf>) at the desired level (V<inf>ref</inf>), as shown in Fig. 18.7.1 (top left). Unfortunately, while array conductance in SA-DLDOs linearly increases with equal step size (<inf>g</inf>LSB) as the code is increased, the output voltage step, <inf>v</inf>LSB, does not; in fact, <inf>v</inf>LsB is nonlinear: ∼G<inf>L</inf>V<inf>out</inf> × <inf>G</inf>LSB. Thus, SA-DLDOs achieve a nonlinear steady-state error, e<inf>ss</inf> = V<inf>eef</inf> − V<inf>out</inf> ≈ ±<inf>g</inf>LSB/G<inf>l</inf> χ V<inf>ú!op</inf>, as shown in Fig. 18.7.1 (bottom left), that deteriorates at large dropout voltages, V<inf>drop</inf> = V<inf>in</inf> − V<inf>oitt</inf>, and at small loads, G<inf>l</inf>. As a result, the required supply step of 10mV (with ±15% typical accuracy) to perform per-core DVFS over a typical 100χ I<inf>L</inf> dynamic range requires an impractical 16b PMOS array resolution. Even with limit-cycle oscillations, the load range that can achieve ±1.5mV accuracy is provably limited to 2<sup>N-6, 7</sup> at V<inf>eef</inf>=VJ2 (Fig. 18.7.2, top left), which would still require a 14b array resolution that, even if it were feasible to build, would come with linearly (for binary search) or exponentially (for linear search) increased response time (T<inf>R</inf>), quiescent power (IQ), and area.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"22 1","pages":"312-314"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Modern DVFS-enabled SoCs require nimble supply regulators that rapidly respond to abrupt load changes and offer fine resolution (e.g., 12.5mV in [1], 10mV in [2]) over large voltage and current dynamic ranges. Switch-array digital LDOs (SA-DLDOs) are a potentially attractive regulation option due to their ability to operate with low input voltages and in part to their modular digital nature and scalability. SA-DLDOs employ 2” unary-[3] or binary-weighted [4] PMOS arrays that are modulated through a 1b or multi-bit ADCs to maintain the output voltage (Vout) at the desired level (Vref), as shown in Fig. 18.7.1 (top left). Unfortunately, while array conductance in SA-DLDOs linearly increases with equal step size (gLSB) as the code is increased, the output voltage step, vLSB, does not; in fact, vLsB is nonlinear: ∼GLVout × GLSB. Thus, SA-DLDOs achieve a nonlinear steady-state error, ess = Veef − Vout ≈ ±gLSB/Gl χ Vú!op, as shown in Fig. 18.7.1 (bottom left), that deteriorates at large dropout voltages, Vdrop = Vin − Voitt, and at small loads, Gl. As a result, the required supply step of 10mV (with ±15% typical accuracy) to perform per-core DVFS over a typical 100χ IL dynamic range requires an impractical 16b PMOS array resolution. Even with limit-cycle oscillations, the load range that can achieve ±1.5mV accuracy is provably limited to 2N-6, 7 at Veef=VJ2 (Fig. 18.7.2, top left), which would still require a 14b array resolution that, even if it were feasible to build, would come with linearly (for binary search) or exponentially (for linear search) increased response time (TR), quiescent power (IQ), and area.
采用开关电容电阻的精度低于1.55 mv的36.9ps- fo数字低压差稳压器
现代支持dvfs的soc需要灵活的电源稳压器,以快速响应突然的负载变化,并在大电压和电流动态范围内提供良好的分辨率(例如,12.5mV [1], 10mV[2])。开关阵列数字ldo (sa - dldo)是一种潜在的有吸引力的调节选择,因为它们能够在低输入电压下工作,部分原因是它们的模块化数字特性和可扩展性。sa - dldo采用2英寸一元[3]或二元加权[4]PMOS阵列,通过1b或多位adc调制,将输出电压(Vout)维持在所需水平(Vref),如图18.7.1(左上)所示。不幸的是,随着编码的增加,sa - dldo中的阵列电导随着等步长(gLSB)线性增加,但输出电压步长vLSB却没有;事实上,vLsB是非线性的:~ GLVout × GLSB。因此,sa - dldo实现了非线性稳态误差,ess = Veef−Vout≈±gLSB/Gl χ Vú!op,如图18.7.1(左下)所示,在大压降(Vdrop = Vin−Voitt)和小负载(Gl)下会恶化。因此,在典型的100χ IL动态范围内执行每核DVFS所需的10mV(±15%典型精度)的电源步长需要不切实际的16b PMOS阵列分辨率。即使使用限环振荡,在Veef=VJ2时,可以达到±1.5mV精度的负载范围也被证明限制在2n - 6,7(图18.7.2,左上),这仍然需要14b的阵列分辨率,即使可以构建,也会带来线性(对于二进制搜索)或指数(对于线性搜索)增加的响应时间(TR),静态功率(IQ)和面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信