{"title":"Strategies to Improve the Anticancer Action of 5-Fluorouracil By Using Magnetically Targeted Drug Delivery Systems","authors":"J. Choubey, A. Bajpai","doi":"10.1080/14328917.2022.2130399","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study the iron oxide incorporated gelatin nanoparticles (IOIGNPS) were prepared following an emulsion crosslinking method employing genipin as a non-toxic crosslinking agent. The drug loaded nanoparticles were characterised by analytical techniques. Whereas the FTIR spectra confirmed the crosslinking of gelatin by genipin and encapsulation of the drug, the TEM analysis revealed the nanosize (up to 100 nm) of the nanoparticles. The magnetisation study suggested for the superparamagnetic nature of nanoparticles. It was found that the amount of released drug increases with increasing percent loading of 5-FU in the range 21.1% to 44.4%. The release profiles of drug were affected by various experimental factors such as the amount and type of gelatin in the feed mixture, pH of the release media, nature of the release medium, and strength of the applied magnetic field. The swelling results indicated that the extent of swelling regulated the extent of drug release.","PeriodicalId":18235,"journal":{"name":"Materials Research Innovations","volume":"1 1","pages":"253 - 259"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14328917.2022.2130399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In this study the iron oxide incorporated gelatin nanoparticles (IOIGNPS) were prepared following an emulsion crosslinking method employing genipin as a non-toxic crosslinking agent. The drug loaded nanoparticles were characterised by analytical techniques. Whereas the FTIR spectra confirmed the crosslinking of gelatin by genipin and encapsulation of the drug, the TEM analysis revealed the nanosize (up to 100 nm) of the nanoparticles. The magnetisation study suggested for the superparamagnetic nature of nanoparticles. It was found that the amount of released drug increases with increasing percent loading of 5-FU in the range 21.1% to 44.4%. The release profiles of drug were affected by various experimental factors such as the amount and type of gelatin in the feed mixture, pH of the release media, nature of the release medium, and strength of the applied magnetic field. The swelling results indicated that the extent of swelling regulated the extent of drug release.
期刊介绍:
Materials Research Innovations covers all areas of materials research with a particular interest in synthesis, processing, and properties from the nanoscale to the microscale to the bulk. Coverage includes all classes of material – ceramics, metals, and polymers; semiconductors and other functional materials; organic and inorganic materials – alone or in combination as composites. Innovation in composition and processing to impart special properties to bulk materials and coatings, and for innovative applications in technology, represents a strong focus. The journal attempts to balance enduring themes of science and engineering with the innovation provided by such areas of research activity.