{"title":"Vehicle Type Classification Using Bagging and Convolutional Neural Network on Multi View Surveillance Image","authors":"Pyong-Kun Kim, Kil-Taek Lim","doi":"10.1109/CVPRW.2017.126","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce a new vehicle type classification scheme on the images from multi-view surveillance camera. We propose four concepts to increase the performance on the images which have various resolutions from multi-view point. The Deep Learning method is essential to multi-view point image, bagging method makes system robust, data augmentation help to grow the classification capability, and post-processing compensate for imbalanced data. We combine these schemes and build a novel vehicle type classification system. Our system shows 97.84% classification accuracy on the 103,833 images in classification challenge dataset.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"38 1","pages":"914-919"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
This paper aims to introduce a new vehicle type classification scheme on the images from multi-view surveillance camera. We propose four concepts to increase the performance on the images which have various resolutions from multi-view point. The Deep Learning method is essential to multi-view point image, bagging method makes system robust, data augmentation help to grow the classification capability, and post-processing compensate for imbalanced data. We combine these schemes and build a novel vehicle type classification system. Our system shows 97.84% classification accuracy on the 103,833 images in classification challenge dataset.