Vehicle Type Classification Using Bagging and Convolutional Neural Network on Multi View Surveillance Image

Pyong-Kun Kim, Kil-Taek Lim
{"title":"Vehicle Type Classification Using Bagging and Convolutional Neural Network on Multi View Surveillance Image","authors":"Pyong-Kun Kim, Kil-Taek Lim","doi":"10.1109/CVPRW.2017.126","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce a new vehicle type classification scheme on the images from multi-view surveillance camera. We propose four concepts to increase the performance on the images which have various resolutions from multi-view point. The Deep Learning method is essential to multi-view point image, bagging method makes system robust, data augmentation help to grow the classification capability, and post-processing compensate for imbalanced data. We combine these schemes and build a novel vehicle type classification system. Our system shows 97.84% classification accuracy on the 103,833 images in classification challenge dataset.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"38 1","pages":"914-919"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

This paper aims to introduce a new vehicle type classification scheme on the images from multi-view surveillance camera. We propose four concepts to increase the performance on the images which have various resolutions from multi-view point. The Deep Learning method is essential to multi-view point image, bagging method makes system robust, data augmentation help to grow the classification capability, and post-processing compensate for imbalanced data. We combine these schemes and build a novel vehicle type classification system. Our system shows 97.84% classification accuracy on the 103,833 images in classification challenge dataset.
基于Bagging和卷积神经网络的多视点监控图像车型分类
本文旨在介绍一种基于多视点监控摄像机图像的新型车辆分类方案。为了提高多视点不同分辨率图像的性能,我们提出了四个概念。深度学习方法是多视点图像的关键,套袋方法使系统具有鲁棒性,数据增强有助于提高分类能力,后处理有助于补偿数据不平衡。我们将这些方案结合起来,建立了一个新的车型分类系统。系统对分类挑战数据集中103833张图像的分类准确率为97.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信