{"title":"Weighted square function inequalities","authors":"A. Osȩkowski","doi":"10.5565/PUBLMAT6211804","DOIUrl":null,"url":null,"abstract":"For an integrable function f on [0, 1)d, let S(f) and M f denote the corresponding dyadic square function and the dyadic maximal function of f, respectively. The paper contains the proofs of the following statements. (i) If w is a dyadic A1 weight on [0, 1)d, then ||S(f)||L1(w) ≤√ 5[w] 1/2 A1 ||M f||L1(w). The exponent 1/2 is shown to be the best possible. (ii) For any p > 1, there are no constants cp, αp epending only on p such that for all dyadic Ap weights w on [0, 1)d, ||S(f)||L1(w) ≤ cp[w] αp Ap ||M f||L1(w).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6211804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
For an integrable function f on [0, 1)d, let S(f) and M f denote the corresponding dyadic square function and the dyadic maximal function of f, respectively. The paper contains the proofs of the following statements. (i) If w is a dyadic A1 weight on [0, 1)d, then ||S(f)||L1(w) ≤√ 5[w] 1/2 A1 ||M f||L1(w). The exponent 1/2 is shown to be the best possible. (ii) For any p > 1, there are no constants cp, αp epending only on p such that for all dyadic Ap weights w on [0, 1)d, ||S(f)||L1(w) ≤ cp[w] αp Ap ||M f||L1(w).