Hopf bifurcation and quasi-periodic dynamics in discrete multisector optimal growth models

ALAIN VENDITTI
{"title":"Hopf bifurcation and quasi-periodic dynamics in discrete multisector optimal growth models","authors":"ALAIN VENDITTI","doi":"10.1006/reco.1996.0018","DOIUrl":null,"url":null,"abstract":"<div><p>This paper discusses the asymptotic stability of the steady state and the existence of a Hopf bifurcation in discrete time multisector optimal growth models. We obtain on the one hand a local turnpike theorem which guarantees the saddle point property for all discount rates. On the other hand, we provide a new proposition which gives some conditions ensuring local stability of the steady state if the impatience rate is not too high. A characterization of the bound<em>δ*</em>, above which the steady state is saddle-point stable, is also proposed in terms of indirect utility function's concavity properties. On this basis, some sufficient conditions for the existence of a Hopf bifurcation are stated. We thus prove the existence of quasi-periodic optimal paths in asymmetric models.</p></div>","PeriodicalId":101136,"journal":{"name":"Ricerche Economiche","volume":"50 3","pages":"Pages 267-291"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/reco.1996.0018","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche Economiche","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003550549690018X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper discusses the asymptotic stability of the steady state and the existence of a Hopf bifurcation in discrete time multisector optimal growth models. We obtain on the one hand a local turnpike theorem which guarantees the saddle point property for all discount rates. On the other hand, we provide a new proposition which gives some conditions ensuring local stability of the steady state if the impatience rate is not too high. A characterization of the boundδ*, above which the steady state is saddle-point stable, is also proposed in terms of indirect utility function's concavity properties. On this basis, some sufficient conditions for the existence of a Hopf bifurcation are stated. We thus prove the existence of quasi-periodic optimal paths in asymmetric models.

离散多部门最优增长模型的Hopf分岔和拟周期动力学
本文讨论了离散时间多扇区最优增长模型稳态的渐近稳定性和Hopf分岔的存在性。我们一方面得到了保证所有贴现率的鞍点性质的局部收费公路定理。另一方面,我们提出了一个新的命题,给出了当不耐率不太高时保证稳态局部稳定的若干条件。根据间接效用函数的凹性,提出了边界δ*的表征,其稳态为鞍点稳定。在此基础上,给出了Hopf分岔存在的几个充分条件。由此证明了非对称模型中准周期最优路径的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信