The dual tree of a fold map germ from $\mathbb {R}^{3}$ to $\mathbb {R}^{4}$

IF 1.3 3区 数学 Q1 MATHEMATICS
J. A. Moya-Pérez, J. J. Nuño-Ballesteros
{"title":"The dual tree of a fold map germ from $\\mathbb {R}^{3}$ to $\\mathbb {R}^{4}$","authors":"J. A. Moya-Pérez, J. J. Nuño-Ballesteros","doi":"10.1017/prm.2022.27","DOIUrl":null,"url":null,"abstract":"Let $f\\colon (\\mathbb {R}^{3},0)\\to (\\mathbb {R}^{4},0)$ be an analytic map germ with isolated instability. Its link is a stable map which is obtained by taking the intersection of the image of $f$ with a small enough sphere $S^{3}_\\epsilon$ centred at the origin in $\\mathbb {R}^{4}$. If $f$ is of fold type, we define a tree, that we call dual tree, that contains all the topological information of the link and we prove that in this case it is a complete topological invariant. As an application we give a procedure to obtain normal forms for any topological class of fold type.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"40 1","pages":"958 - 977"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2022.27","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $f\colon (\mathbb {R}^{3},0)\to (\mathbb {R}^{4},0)$ be an analytic map germ with isolated instability. Its link is a stable map which is obtained by taking the intersection of the image of $f$ with a small enough sphere $S^{3}_\epsilon$ centred at the origin in $\mathbb {R}^{4}$. If $f$ is of fold type, we define a tree, that we call dual tree, that contains all the topological information of the link and we prove that in this case it is a complete topological invariant. As an application we give a procedure to obtain normal forms for any topological class of fold type.
折叠映射的对偶树从$\mathbb {R}^{3}$到$\mathbb {R}^{4}$
设$f\冒号(\mathbb {R}^{3},0)\到(\mathbb {R}^{4},0)$是一个具有孤立不稳定性的解析映射胚。它的连杆是一个稳定的映射,它是通过取$f$的像与以$\mathbb {R}^{4}$为中心的一个足够小的球体$S^{3}_\epsilon$的交点得到的。如果$f$是折型的,我们定义一个树,我们称之为对偶树,它包含了链路的所有拓扑信息,并且我们证明在这种情况下它是一个完全拓扑不变量。作为一种应用,我们给出了求任意折叠型拓扑类正规形式的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信