A Multi-objective Version of the Lin-Kernighan Heuristic for the Traveling Salesman Problem

Emerson B. de Carvalho, E. Goldbarg, M. Goldbarg
{"title":"A Multi-objective Version of the Lin-Kernighan Heuristic for the Traveling Salesman Problem","authors":"Emerson B. de Carvalho, E. Goldbarg, M. Goldbarg","doi":"10.22456/2175-2745.76452","DOIUrl":null,"url":null,"abstract":"The Lin and Kernighan’s algorithm for the single objective Traveling Salesman Problem (TSP) is one of the most efficient heuristics for the symmetric case. Although many algorithms for the TSP were extended to the multi-objective version of the problem (MTSP), the Lin and Kernighan’s algorithm was still not fully explored. Works that applied the Lin and Kernighan’s algorithm for the MTSP were driven to weighted sum versions of the problem. We investigate the LK from a Pareto dominance perspective. The multi-objective LK was implemented within two local search schemes and applied to 2 to 4-objective instances. The results  showed that the proposed algorithmic variants obtained better results than a state-of-the-art algorithm.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.76452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Lin and Kernighan’s algorithm for the single objective Traveling Salesman Problem (TSP) is one of the most efficient heuristics for the symmetric case. Although many algorithms for the TSP were extended to the multi-objective version of the problem (MTSP), the Lin and Kernighan’s algorithm was still not fully explored. Works that applied the Lin and Kernighan’s algorithm for the MTSP were driven to weighted sum versions of the problem. We investigate the LK from a Pareto dominance perspective. The multi-objective LK was implemented within two local search schemes and applied to 2 to 4-objective instances. The results  showed that the proposed algorithmic variants obtained better results than a state-of-the-art algorithm.
旅行商问题的多目标Lin-Kernighan启发式
求解单目标旅行商问题(TSP)的Lin和Kernighan算法是对称情况下最有效的启发式算法之一。尽管针对TSP的许多算法被扩展到问题的多目标版本(MTSP),但Lin和Kernighan的算法仍然没有得到充分的探索。将Lin和Kernighan的算法应用于MTSP的作品被驱动为问题的加权和版本。我们从帕累托优势的角度来研究LK。在两种局部搜索方案中实现多目标LK,并应用于2到4个目标实例。结果表明,所提出的算法变体比现有的算法获得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信