Three-Dimensional Urban Characterization Using Polarimetric SAR Correlation Tomographic Techniques and TSX/TDX Images

Xing Peng, Yue Huang, L. Ferro-Famil, Jianjun Zhu, Yanan Du, Haiqiang Fu
{"title":"Three-Dimensional Urban Characterization Using Polarimetric SAR Correlation Tomographic Techniques and TSX/TDX Images","authors":"Xing Peng, Yue Huang, L. Ferro-Famil, Jianjun Zhu, Yanan Du, Haiqiang Fu","doi":"10.1109/IGARSS.2019.8900289","DOIUrl":null,"url":null,"abstract":"Polarimetric synthetic aperture radar tomography (Pol-TomoSAR) allows to achieve a 3-D characterization over urban areas using multiple polarimetric acquisitions. However, using spaceborne datasets, such as TerraSAR-X, it is difficult to localize the distributed or uncorrelated scattering patterns along elevation due to the temporal decorrelation. In order to overcome this limitation, this paper proposes polarimetric correlation tomographic techniques based on Tandem-mode images. The key of this technique is to build a covariance matrix from the observed Tandem coherence pairs, and then apply conventional covariance-based tomographic techniques. This processing allows to extract both coherent and distributed scatterers. The resulting 3-D reconstruction is more refined and detailed, compared to the one derived from TerraSAR-X data. Seven TSX/TDX pairs in fully polarimetric mode over a small county in Yunnan province, China, are used to demonstrate the effectiveness of this technique for the characterization of urban environments.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"26 1","pages":"4924-4926"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polarimetric synthetic aperture radar tomography (Pol-TomoSAR) allows to achieve a 3-D characterization over urban areas using multiple polarimetric acquisitions. However, using spaceborne datasets, such as TerraSAR-X, it is difficult to localize the distributed or uncorrelated scattering patterns along elevation due to the temporal decorrelation. In order to overcome this limitation, this paper proposes polarimetric correlation tomographic techniques based on Tandem-mode images. The key of this technique is to build a covariance matrix from the observed Tandem coherence pairs, and then apply conventional covariance-based tomographic techniques. This processing allows to extract both coherent and distributed scatterers. The resulting 3-D reconstruction is more refined and detailed, compared to the one derived from TerraSAR-X data. Seven TSX/TDX pairs in fully polarimetric mode over a small county in Yunnan province, China, are used to demonstrate the effectiveness of this technique for the characterization of urban environments.
利用偏振SAR相关层析成像技术和TSX/TDX图像的三维城市特征
偏振合成孔径雷达层析成像(Pol-TomoSAR)可以通过多次偏振采集来实现城市地区的三维特征。然而,使用星载数据集,如TerraSAR-X,由于时间去相关,很难定位沿高程分布或不相关的散射模式。为了克服这一局限,本文提出了基于串联模式图像的极化相关层析成像技术。该技术的关键是将观测到的串联相干对建立协方差矩阵,然后应用传统的基于协方差的层析成像技术。这种处理允许提取相干和分布散射体。与TerraSAR-X数据相比,由此产生的三维重建更加精细和详细。在中国云南省的一个小县城,用全偏振模式的7个TSX/TDX对来证明这种技术对城市环境特征的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信