Target surface layer dynamics during application of intense electron beams

R. Fetzer, W. An, A. Weisenburger, G. Mueller
{"title":"Target surface layer dynamics during application of intense electron beams","authors":"R. Fetzer, W. An, A. Weisenburger, G. Mueller","doi":"10.1109/PLASMA.2013.6633333","DOIUrl":null,"url":null,"abstract":"Summary form only given. Intense pulsed electron beams are commonly used to improve mechanical properties of metal targets in near-surface regions or for surface alloying. In some cases, however, the intended property changes are accompanied by the development of surface roughness. The exact origin of this phenomenon is still under debate. In this work, the dynamics of the target surface layer in its melted stage is investigated experimentally and theoretically. The pulsed electron beam facility GESA at KIT is used to generate electron beams with power density 0.5-2 MW/cm2, electron energy 120 keV, and pulse duration up to 200 μs. Various fast in-situ optical diagnostic tools have been set up and successfully tested during treatment of stainless steel, copper, and aluminum targets. After this preceding work, a systematic investigation of the influence of various materials and of specific beam parameters on the surface layer dynamics is now performed. The experimental studies are accompanied by numerical simulations of heat transfer and melt motion and by theoretical considerations concerning the relevance of possible hydrodynamic instabilities.","PeriodicalId":6313,"journal":{"name":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","volume":"5 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2013.6633333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary form only given. Intense pulsed electron beams are commonly used to improve mechanical properties of metal targets in near-surface regions or for surface alloying. In some cases, however, the intended property changes are accompanied by the development of surface roughness. The exact origin of this phenomenon is still under debate. In this work, the dynamics of the target surface layer in its melted stage is investigated experimentally and theoretically. The pulsed electron beam facility GESA at KIT is used to generate electron beams with power density 0.5-2 MW/cm2, electron energy 120 keV, and pulse duration up to 200 μs. Various fast in-situ optical diagnostic tools have been set up and successfully tested during treatment of stainless steel, copper, and aluminum targets. After this preceding work, a systematic investigation of the influence of various materials and of specific beam parameters on the surface layer dynamics is now performed. The experimental studies are accompanied by numerical simulations of heat transfer and melt motion and by theoretical considerations concerning the relevance of possible hydrodynamic instabilities.
强电子束作用下靶面层动力学
只提供摘要形式。强脉冲电子束通常用于改善金属靶材近表面区域的力学性能或用于表面合金化。然而,在某些情况下,预期的性能变化伴随着表面粗糙度的发展。这一现象的确切起源仍在争论中。本文从理论上和实验上研究了靶面层熔化阶段的动力学特性。利用日本理工大学GESA脉冲电子束装置,可产生功率密度0.5-2 MW/cm2、电子能量120 keV、脉冲持续时间200 μs的电子束。已经建立了各种快速原位光学诊断工具,并在不锈钢,铜和铝靶材的治疗过程中成功测试。在此之前的工作之后,现在系统地研究了各种材料和特定光束参数对表面层动力学的影响。实验研究伴随着传热和熔体运动的数值模拟,以及关于可能的流体动力不稳定性的相关性的理论考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信